

WS

中华人民共和国卫生行业标准

WS/T 10043—2025

代替 WS/T 471—2015

寄生虫病名词术语

Glossary of parasitic diseases

2025-12-29 发布

2026-06-01 实施

国家疾病预防控制局 发布

前　　言

本文件按照GB/T 20001.1—2024《标准起草规则第1部分：术语》的规定起草。

本文件代替WS/T 471—2015《寄生虫病诊断名词术语》，与WS/T 471—2015相比，除结构调整和编辑性修改外，主要技术变化如下：

a) 在原有通用术语、寄生虫病术语两部分的基础上，增加了寄生虫病原术语、病原学检测技术术语，删除了临床表现术语、检查方法术语（见WS/T 471—2015《寄生虫病诊断名词术语》）。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别专利的责任。

本文件由国家疾病预防控制标准委员会寄生虫病标准专业委员会提出，国家疾病预防控制局归口。

本文件起草单位：中国疾病预防控制中心寄生虫病预防控制所（国家热带病研究中心）、江苏省血吸虫病防治研究所、贵州省疾病预防控制中心、中山大学、海南医科大学。

本文件主要起草人：李石柱、周晓农、郑彬、曹俊、卢丽丹、许静、吕志跃、杨国静、李真、杨频。

本文件及其所代替文件的历次版本发布情况为：

——2015年首次发布为WS/T 471—2015；

——本次为第一次修订。

寄生虫病名词术语

1 范围

本文件界定了寄生虫病名词术语的定义。

本文件适用于寄生虫病的诊治、防控、教学和研究。

2 规范性引用文件

本文没有规范性引用文件。

3 通用术语

3.1

共生 **symbiosis**

两种不同生物共同生活的现象。

3.2

共栖 **commensalism**

两种不同生物共同生活，其中一方受益，另一方既不受益，也不受害的现象。

3.3

互利共生 **mutualistic symbiosis; mutualism**

两种不同生物共同生活，双方互相依靠，彼此受益的现象。

3.4

寄生 **parasitism**

两种不同生物共同生活，其中一方受益，另一方受害的现象。

3.4.1

多寄生 **polyparasitism**

人体同时感染两种或两种以上寄生虫的现象。

3.4.2

异位寄生 **ectopic parasitism**

某些寄生虫在常见寄生部位以外的组织或器官内寄生的现象。

3.5

寄生虫生活史 **life cycle of parasite**

寄生虫完成一代生长、发育和繁殖的完整过程。

3.6

世代交替 **alteration of generations**

寄生虫的生活史中，无性生殖和有性生殖两种方式有规律地交替进行的现象。

3.7

寄生虫 **parasite**

两种生物共生关系中受益的一方，特指动物性寄生物，其生存依赖宿主并造成宿主损害。

3.7.1

专性寄生虫 **obligatory parasite**

整个生活史过程或某个阶段必须营寄生生活，否则无法存活的寄生虫。

3.7.2

兼性寄生虫 **facultative parasite**

主要在外界营自生生活，但在某种情况下可侵入宿主营寄生生活的寄生虫。

3.7.3

体内寄生虫 **endoparasite**

寄生于宿主体内器官或组织、细胞内的寄生虫。

3.7.4

体外寄生虫 **ectoparasite**

一些在与宿主体表接触时刺吸血液等体液，吸食后即离开宿主体表的节肢动物。蚊、白蛉、虱、蚤、蜱等。

3.8

宿主 **host**

两种不同生物共同生活，其中一方受益，一方受害，受害方称为宿主。

3.8.1

终宿主 **definitive host; final host**

寄生虫成虫或有性生殖阶段所寄生的宿主。

3.8.2

中间宿主 **intermediate host**

寄生虫幼虫或无性生殖阶段所寄生的宿主。如果生活史中有多个中间宿主，则按其寄生的先后顺序称为第一中间宿主、第二中间宿主等。

3.8.3

保虫宿主 **reservoir host**

储存宿主、储蓄宿主

可携带人兽共患寄生虫并在特定条件下将病原体传播给人类的脊椎动物。这类宿主在寄生虫生活史中起储存和扩散作用。

3.8.4

转续宿主 **paratenic host; transport host**

某些寄生虫幼虫侵入非适宜宿主后无法发育为成虫，但可长期存活并保持幼虫状态的宿主类型。

3.9

寄生虫病 **parasitic diseases**

寄生虫侵入宿主，并在宿主体内寄生、发育所引起的疾病。

3.9.1

机会性寄生虫病 **opportunistic parasitic disease**

免疫功能正常的个体感染寄生虫后无明显的临床表现而处于隐性感染状态，但在机体免疫功能低下时，寄生虫的繁殖力和致病力可明显增强，从而引发明显的临床症状和体征，严重时甚至可致死的一类寄生虫病。

3.9.2

新现寄生虫病 **emerging parasitic disease**

新识别的或未知的寄生虫病，包括寄生虫病或综合征已被认识但未被确认，或病原体尚未被确认的寄生虫病；已在人类存在但其病原体被重新鉴定或分类的寄生虫病；营自由生活或寄生虫与动物体内的寄生虫可以偶然在人体寄生导致的寄生虫病；新出现的人体寄生虫病。

3.9.3

再现寄生虫病 re-emerging parasitic disease

一些早已熟知且发病率降至很低水平,一度不再被视为公共卫生问题,但现在又重新流行的寄生虫病。

3.9.4

食源性寄生虫病 foodborne parasitic disease

因摄入生或半生的被寄生虫感染阶段寄生的动物肉类或水产品,或被感染期寄生虫污染的食物或水而引起的一类寄生虫病。

3.9.5

水源性寄生虫病 waterborne parasitic disease

通过饮用或接触被感染期寄生虫污染的水源而引起的一类寄生虫病。

3.9.6

土源性寄生虫病 soil-transmitted parasitic disease

因摄入或皮肤接触在外界土壤中发育至感染期寄生虫而引起的一类寄生虫病。此类寄生虫病的病原体发育过程中一般不需要中间宿主。

3.9.7

人兽共患寄生虫病 zoonotic parasitic disease

在人和脊椎动物之间自然传播的寄生虫病。

3.9.8

虫媒寄生虫病 arbo-parasitosis

由医学节肢动物作为媒介传播病原体而引起的寄生虫病。

3.10

隐性感染 inapparent infection; silent infection

人体感染寄生虫后,既无明显的临床表现,又不易用常规方法检获病原体的一种感染状态。

3.11

带虫者 carrier

感染寄生虫后并不出现明显临床症状和体征的感染者。

3.12

伴随免疫 concomitant immunity

宿主在感染某种寄生虫后会对再次感染的同种寄生虫产生部分抵抗力。

3.13

带虫免疫 premunition

宿主感染寄生虫后产生一定免疫力,可将体内寄生虫数量抑制在较低水平,但不能清除,并可抵抗同种寄生虫再感染;一旦体内寄生虫被清除,这种免疫力也随之消失。

3.14

免疫逃避 immune evasion

寄生虫侵入宿主逃避免疫攻击而继续生存的现象。

3.15

自体感染 autoinfection

感染宿主的寄生虫在宿主体内引起自体内重复感染,或排出体外后再次感染同一宿主的现象。

3.16

感染期 infective stage

寄生虫感染宿主并在宿主体内继续发育繁殖的阶段。

3.17

潜伏期 latent period

从寄生虫侵入人体到最早症状出现的一段时间。

3.18

媒介生物 vector

通过生物传播和（或）机械携带方式将病原生物从传染源或环境传播给人类的生物。

3.19

医学节肢动物 medical arthropod

动物界中种类最多、数量最大、分布最广的一类动物。特点为有分节的身体和关节附肢，身体表面覆盖着几丁质的外骨骼。通过骚扰、螫刺、吸血、毒害、寄生和传播病原体等方式危害人畜健康。

3.20

驱虫治疗 anthelmintic treatment

服用相应驱虫药物杀死或驱除感染者体内寄生虫的治疗方案。

3.21

群体服药 mass drug administration

对某特定行政区域（如县、乡镇、行政村）内的全部居民（有禁忌症者除外）使用针对性的药物进行驱虫的一种方案。

3.22

预防性化学药物治疗 preventive chemotherapy

针对特定易感人群进行的大规模药物预防措施，通过单独或联合使用药物来预防寄生虫感染或降低发病率。

3.23

长效驱虫蚊帐 long-lasting insecticidal net

经过特殊处理，含有拟除虫菊酯类等杀虫剂，能够持续驱杀蚊虫的蚊帐产品。

3.24

室内滞留喷洒 indoor residual spray

将长效期长的杀虫剂药液喷洒在室内的墙壁、门窗、天花板和家具等表面上，使药剂滞留在上述物体表面上，维持较长时期的药效，以持续杀灭蚊虫的一种防治措施。

3.25

叮人率 man-biting rate

在一定时间内（如一夜或数夜），每人被某种吸血昆虫（如蚊、蠓、蚋）叮咬的次数。

注：用于确定吸血昆虫的活动水平。

3.26

昆虫学接种率 entomological inoculation rate

每人每天获得疟原虫子孢子接种的概率。疟疾传播强度的常用指标。用媒介按蚊的叮人率与其子孢子自然感染率相乘求得。

3.27

人血指数 human blood index

吸血昆虫（如蚊、蚋、白蛉）在吸血时选择人类血液的比例。

注：人血指数反映了其与人类的接触程度，以及传播疾病的可能性。

3. 28

基本繁殖率 basic reproduction rate

在某易感群体中，某感染个体在其整个感染期内，产生的二代感染病例数。

3. 29

经卵传递 transovarian transmission

病原体通过节肢动物宿主的卵巢，经卵传递给下一代的方式。

3. 30

生殖营养周期 gonotrophic cycle

蚊从吸血到产卵的过程。包括寻找宿主吸血、胃血消化和卵巢发育、寻找孳生地产卵三个阶段。

3. 31

季节消长 seasonal fluctuation

在特定空间内，动物或昆虫种群数量或相关指标随季节变化而增多或减少的趋势。

3. 32

滞育现象 diapause phenomenon

某些节肢动物生命周期中遇到不利环境时，暂停生长发育、减少生理活动的现象。

3. 33

槟榔南瓜子方 betel nut and pumpkin seed mixture

中药方剂，配方主要有南瓜子、槟榔、硫酸镁，通过槟榔和南瓜子的协同作用麻痹并排出绦虫。主要用于肠道绦虫病的治疗。

3. 34

幼虫移行症 larva migrans

某些蠕虫幼虫侵入非适宜宿主的人体后，不能发育为成虫，但可在人体内长期存活并迁移，引起局部或全身性病变。可分为皮肤幼虫移行症和内脏幼虫移行症。

3. 35

可溶性虫卵抗原 soluble egg antigen

血吸虫虫卵中毛蚴分泌的一种抗原，含蛋白质、糖蛋白、多糖等多种物质，具有强的抗原性和免疫原性，在血吸虫病的诊断和病理变化中起着重要作用。

4 寄生虫病原术语

4. 1

医学原虫 protozoa

隶属于原生动物亚界。具有独立生命活动能力，营自生、腐生或寄生生活的一类单细胞真核生物。

4. 1. 1

叶足虫 Lobosea

隶属于叶足纲。具有叶状伪足运动细胞器的一类原虫。

4. 1. 1. 1

溶组织内阿米巴 *Entamoeba histolytica*

隶属于内阿米巴科。生活史包括滋养体期和包囊期。经口食入四核成熟包囊感染，滋养体为致病阶段，可引起肠内外病变，是阿米巴病的病原体。

4. 1. 1. 2

哈门内阿米巴 *Entamoeba hartmani*

隶属于内阿米巴科。生活史和形态与溶组织内阿米巴相似，其虫体较小。在流行病学调查中，常以包囊小于10 μm为特征与溶组织内阿米巴相鉴别。对人不致病。

4.1.1.3

结肠内阿米巴 *Entamoeba coli*

隶属于内阿米巴科。人体肠道内常见的一种共栖原虫，其形态和生活史与溶组织内阿米巴相似，成熟包囊具8个核。经口食入包囊感染，在结肠寄生，不侵入组织，亦无临床症状。

4.1.1.4

齿龈内阿米巴 *Entamoeba gingivalis*

隶属于内阿米巴科。人及多种哺乳类动物的口腔共栖型阿米巴。生活史仅有滋养体期。对人不致病。

4.1.1.5

微小内蜒阿米巴 *Endolimax nana*

隶属于内阿米巴科。寄生于宿主肠腔内的小型阿米巴原虫，生活史包括滋养体期和包囊期。在大肠中成囊，成熟包囊含四核。对人不致病。

4.1.1.6

棘阿米巴 *Acanthamoeba spp.*

隶属于棘阿米巴科。广泛分布于水和土壤中、自由生活的小型阿米巴原虫。生活史包括滋养体期和包囊期，滋养体期有特征性棘状伪足。滋养体经损伤的皮肤黏膜或角膜侵入人体，可引起角膜炎、脑膜炎等，是棘阿米巴角膜炎和脑膜炎的病原体。

4.1.1.7

狒狒巴拉姆希阿米巴 *Balamuthia mandrillaris*

隶属于棘阿米巴科。多存在于淤泥、池塘或游泳池中的营自由生活的阿米巴原虫。生活史包括滋养体期和包囊期。是肉芽肿性阿米巴性脑炎的病原体。

4.1.1.8

福氏耐格里阿米巴 *Naegleria fowleri*

隶属于双鞭阿米巴科。多存在于淤泥、池塘或游泳池中的营自生生活的阿米巴原虫。生活史包括滋养体期、短暂的鞭毛期和包囊期。可经鼻腔黏膜侵入人体脑实质，是原发性阿米巴性脑膜脑炎的病原体。

4.1.1.9

双核匀变虫 *Sappinia diploidea*

隶属于甲变形科。具有双细胞包囊、自由生活的机会性致病阿米巴原虫。生活史包括滋养体期和包囊期，滋养体具双核。可通过吸入、摄入或经皮肤接触等方式进入人体，是阿米巴脑炎的病原体。

4.1.2

鞭毛虫 *Flagellate*

隶属于动鞭纲。主要寄生于宿主消化道、泌尿道、血液及组织内的一类营寄生生活的原虫。以鞭毛作为运动细胞器，无色素体，以纵二分裂法繁殖。

4.1.2.1

利什曼原虫 *Leishmania spp.*

隶属于锥虫科。生活史包括寄生于白蛉消化道内的前鞭毛体期和寄生于人和其他哺乳动物的巨噬细胞内的无鞭毛体期。当感染有前鞭毛体的雌性白蛉叮刺人体吸血时，前鞭毛体随白蛉分泌的唾液进入人体，一部分侵入巨噬细胞而致病，是利什曼病的病原体。

4.1.2.1.1

杜氏利什曼原虫 *Leishmania donovani*

隶属于锥虫科。寄生于人体或哺乳动物巨噬细胞的利什曼原虫。无鞭毛体为致病阶段，是内脏利什曼病和皮肤利什曼病的病原体。

4.1.2.1.2

婴儿利什曼原虫 *Leishmania infantum*

隶属于锥虫科。寄生于人体或哺乳动物巨噬细胞的利什曼原虫。无鞭毛体为致病阶段，是内脏利什曼病和地中海沿岸地带皮肤利什曼病的病原体。

4.1.2.2

布氏锥虫冈比亚亚种 *Trypanosoma brucei gambiense*

隶属于锥虫科。分布于西非和中非河流或森林地带，具多态性锥鞭毛体的血鞭毛原虫。循环后期锥鞭毛体对人具有感染性。以须舌蝇、拟寄舌蝇、棕足舌蝇为主要传播媒介。为慢性非洲锥虫病（西非昏睡病）的病原体。

4.1.2.3

布氏锥虫罗得西亚亚种 *Trypanosoma brucei rhodesiense*

隶属于锥虫科。分布于非洲东部和南部热带草原及湖岸灌木和丛林地带，具多态性锥鞭毛体的血鞭毛原虫。循环后期锥鞭毛体对人具有感染性。以淡足舌蝇、刺舌蝇及丝舌蝇为主要传播媒介。为急性非洲锥虫病（东非昏睡病）的病原体。

4.1.2.4

克氏锥虫 *Trypanosoma cruzi*

隶属于锥虫科。主要分布于南美洲和中美洲，经锥蝽传播的人体粪源性锥虫。生活史包括无鞭毛体期、上鞭毛体期和锥鞭毛体期，其中锥鞭毛体为感染阶段，无鞭毛体为主要致病阶段。是美洲锥虫病（恰加斯病）的病原体。

4.1.2.5

锥鞭毛体 *trypomastigote*

锥虫在人体血液、淋巴液和脑脊液中寄生时具有多态性特征的基本形态。可分为细长型、中间型和粗短型，仅粗短型对舌蝇具感染性。

4.1.2.6

蓝氏贾第鞭毛虫 *Giardia lamblia*

隶属于六鞭毛科。主要寄生于人和某些哺乳动物小肠的肠道寄生原虫。生活史包括滋养体期和包囊期。包囊为感染期，经口食入包囊而感染，可引起腹泻和消化不良。是蓝氏贾第鞭毛虫病（贾第虫病）的病原体。

4.1.2.7

阴道毛滴虫 *Trichomonas vaginalis*

隶属于毛滴虫科。寄生于人体阴道和泌尿道的鞭毛虫。生活史简单，仅有滋养体期。主要经性接触传播，可引起滴虫性阴道炎、尿道炎和前列腺炎。

4.1.3

孢子虫 *Sporozoan*

隶属于孢子虫纲。营寄生生活，生活史较复杂。生殖方式包括无性和有性生殖两类。

4.1.3.1

疟原虫 *Plasmodium* spp.

隶属于疟原虫科。主要经按蚊传播，在人体肝细胞和红细胞内发育的寄生于人体的单细胞寄生原虫，其生活史需要按蚊和人两个宿主。在红细胞内发育包括滋养体、裂殖体和配子体三个主要阶段。是疟疾的病原体。

4.1.3.1.1

恶性疟原虫 *Plasmodium falciparum*

隶属于疟原虫科。致死率最高的一种人体疟原虫。血涂片显微镜检查一般仅见环状体和配子体。是恶性疟的病原体。

4.1.3.1.2

间日疟原虫 *Plasmodium vivax*

隶属于疟原虫科。全球分布最广泛的一种疟原虫。红细胞内期主要寄生于网织红细胞，血涂片显微镜检查可见环状体、滋养体、裂殖体和配子体，可由红外期休眠子引起复发。为间日疟的病原体。

4.1.3.1.3

卵形疟原虫 *Plasmodium ovale*

隶属于疟原虫科。红细胞内期主要寄生于网织红细胞，寄生红细胞常呈伞状改变，可由红外期休眠子引起复发。是卵形疟的病原体。

4.1.3.1.4

三日疟原虫 *Plasmodium malariae*

隶属于疟原虫科。红细胞内期多寄生于较衰老的红细胞，寄生的红细胞不胀大，常可见带状胞浆。是三日疟的病原体。

4.1.3.1.5

诺氏疟原虫 *Plasmodium knowlesi*

隶属于疟原虫科。以食蟹猴、豚尾猴、猪尾猴、黑脊叶猴为宿主的一种疟原虫，也可以感染人。被寄生的一个红细胞内可有多个环状体或一环双核或多核，环粗大；晚期滋养体可呈“带状”。是诺氏疟的病原体。

4.1.3.1.6

红细胞外期 *exoerythrocytic stage*

红细胞前期，红外期

疟原虫经按蚊叮咬进入人体后，首先在肝细胞内进行裂体增殖，这一阶段称为红细胞外期。红外期休眠子是疟疾复发的根源。

4.1.3.1.7

红细胞内期 *erythrocytic stage*

红内期

疟原虫在红细胞内寄生，并进行裂体增殖以及发育成雌、雄配子体的阶段。

4.1.3.1.8

休眠子 *hypnozoite*

疟原虫感染过程中，当子孢子侵入肝细胞后，部分不继续进行裂体生殖，而处于缓慢发育的休眠状态的子孢子。仅见于间日疟原虫和卵形疟原虫，与疟疾复发有关。

4.1.3.1.9

疟色素 *hemozoin*

疟原虫消化分解血红蛋白形成的一类呈黑褐色或棕黄色颗粒的代谢产物。

4.1.3.1.10

滋养体 *trophozoite*

原虫具运动、摄食与繁殖等功能的生活史阶段，通常与致病相关。

4.1.3.1.11

裂殖体 *schizont*

原生动物（如疟原虫）进行裂体生殖，细胞核经多次分裂，而细胞质尚未分裂的阶段。

4.1.3.1.12

裂殖子 merozoite

原生动物裂殖体的核经多次反复分裂后胞质随之分解，每一个核都被部分胞质包裹，形成一种新的个体。

4.1.3.1.13

配子体 gametocyte

原虫经过数次裂体增殖后，部分裂殖子侵入红细胞后发育成有性期，有雌、雄之分。

4.1.3.1.14

配子生殖 gametogony

雌、雄配子结合发育新一代个体的生殖方式。由亲体产生的有性生殖细胞雌、雄配子两两相配成对、互相结合，成为合子，再由合子发育成新个体的一种有性生殖方式。

4.1.3.1.15

孢子生殖 sporogony

合子形成后发育成卵囊，卵囊内经过多分裂又形成许多子孢子的一种无性生殖方式。

4.1.3.1.16

裂体生殖 merogony; schizogony

裂殖子侵入细胞逐步发育，核分裂形成裂殖体，细胞质随着核而分裂，释放出多个裂殖子的一种无性生殖方式。

4.1.3.2

刚地弓形虫 *Toxoplasma gondii*

隶属于弓形虫科。寄生于人和动物有核细胞内的一种专性细胞内机会性致病原虫。生活史较复杂，需要两个宿主，分别进行无性生殖和有性生殖。猫科动物为其终宿主。人经口食入带有弓形虫滋养体、卵囊、包囊或假包囊而感染，是弓形虫病的病原体。

4.1.3.2.1

弓形虫滋养体 trophozoite of *Toxoplasma gondii*

在除终末宿主肠上皮细胞外的宿主细胞内营分裂繁殖的虫体，包括速殖子和缓殖子。

4.1.3.2.2

弓形虫速殖子 tachyzoite of *Toxoplasma gondii*

弓形虫在中间宿主的有核细胞中营分裂繁殖的生活阶段，呈纺锤形或椭圆形，以二分裂的方式迅速增殖，是弓形虫急性感染的主要致病阶段。

4.1.3.2.3

弓形虫缓殖子 bradyzoite of *Toxoplasma gondii*

弓形虫包囊内的滋养体。其形态与速殖子相似，但虫体较小，核稍偏后。是弓形虫慢性感染的主要致病阶段。

4.1.3.3

微小隐孢子虫 *Cryptosporidium parvum*

隶属于隐孢子虫科。主要寄生于人畜小肠上皮细胞内的一种重要机会性致病原虫。体积微小，卵囊为感染阶段。可引起腹泻，是隐孢子虫病的病原体之一。

4.1.3.3.1

人隐孢子虫 *Cryptosporidium hominis*

隶属于隐孢子虫科。几乎专属寄生于人消化道上皮细胞的一种致病原虫。体积微小，宿主特异性强。可引起腹泻，是隐孢子虫病的病原体之一。

4.1.3.3.2

猪人肉孢子虫 *Sarcocystis suis hominis*

隶属于肉孢子虫科。寄生于人体小肠的一种肉孢子虫，以猪为中间宿主、人为终宿主。是人肠肉孢子虫病的病原体之一。

4.1.3.3.3

人肉孢子虫 *Sarcocystis hominis*

隶属于肉孢子虫科。寄生于人体小肠的一种肉孢子虫，以牛为中间宿主、人为终宿主。是人肠肉孢子虫病的病原体之一。

4.1.3.3.4

人肌肉肉孢子虫 *Sarcocystis lindemanni*

隶属于肉孢子虫科。以人作为中间宿主，终宿主未定。在人肌肉组织内形成包囊的一种肉孢子虫，可引起肌炎和心肌炎，是人肌肉肉孢子虫病的病原体。

4.1.3.3.5

肉孢子毒素 *sarcocysin*

寄生宿主肌肉中的肉孢子囊，囊壁破裂时释放出的一种毒性很强的物质，作用于神经系统、心、肾上腺、肝和小肠等，严重时可致死。

4.1.3.3.6

肉孢子虫卵囊 *oocyst of Sarcocystis*

成熟卵囊呈长椭圆形，内含2个呈椭圆形或卵圆形的双层壁且透明的孢子囊。常在肠内自行破裂，孢子囊即脱出。为人肠肉孢子虫对中间宿主的感染阶段。

4.1.3.3.7

肉孢子囊 *sarcocyst*

肉孢子虫在中间宿主肌肉中形成的一种呈圆柱形或纺锤形的包囊。囊壁内有许多间隔将囊内缓殖子分隔成簇。

4.1.3.4

微孢子虫 *Microsporidium spp.*

生物学分类地位尚存争议，将其列属于孢子虫，但在形态与生物特性上介于原虫与真菌之间。广泛寄生于节肢动物、鸟类、哺乳动物和人类的专性细胞内寄生的单细胞真核生物。孢子是微孢子虫的感染期，是微孢子虫生活史中唯一可在宿主细胞外生存的发育阶段。是微孢子虫病的病原体。

4.1.3.5

何氏脑炎孢原虫 *Encephalitozoon hellem*

隶属于脑炎微孢子虫科。是一种机会性致病原虫，主要寄生于人体巨噬细胞、角膜结膜上皮细胞、鼻上皮细胞、支气管上皮细胞、泌尿道被覆上皮及肾小管的一种脑炎微孢子虫。孢子通过被污染的水源、食物或空气进入宿主体内。是微孢子虫病的病原体之一，可引起胆管炎、结膜炎和肝炎。

4.1.3.6

兔脑炎孢原虫 *Encephalitozoon cuniculi*

隶属于脑炎微孢子虫科。所有哺乳动物细胞均易感，其中兔子的感染率最高。主要寄生于多种组织器官和细胞内的一种专性细胞内寄生的真核单细胞微孢子虫，孢子为其感染阶段。是兔脑胞内原虫病的病原体。

4.1.3.7

毕氏肠微孢子虫 *Enterocytozoon bieneusi*

隶属于肠微孢子虫科。主要寄生于人体小肠上皮细胞、肝胆管上皮细胞胞质内的一种专性细胞内寄生肠道原虫，可引起腹泻。是毕氏肠微孢子虫病的病原体。

4. 1. 3. 8

卡宴环孢子虫 *Cyclospora cayetanensis*

隶属于真球虫科。主要寄生于人小肠黏膜内的一种专性细胞内寄生原虫。外形和大小与隐孢子虫相似，成熟卵囊为其感染阶段，含有2个孢子囊，每个孢子囊内含有2个子孢子。为环孢子虫病的病原体之一，可引起以腹泻为主要症状的消化道疾病。

4. 1. 3. 9

人芽囊原虫 *Blastocystis hominis*

隶属于人芽囊原虫新亚门。寄生于人和动物肠道内的单细胞真核生物。常经口食入包囊而感染，主要寄生在人体的回盲部，阿米巴型虫体是其致病阶段。是人芽囊原虫病的病原体。

4. 1. 3. 10

巴贝虫 *Babesia* spp.

隶属于巴贝虫科。已鉴定的有100多种，可以感染人体的主要为田鼠巴贝虫、分歧巴贝虫和邓肯巴贝虫等。形态与疟原虫相似但无疟色素，寄生在红细胞内。通过蜱虫叮咬以及输血传播，致巴贝虫病。

4. 1. 3. 10. 1

田鼠巴贝虫 *Babesia microti*

隶属于巴贝虫科。经蜱传播，寄生于红细胞内的一种人兽共患血液原虫。生活史包括在媒介蜱内的有性繁殖阶段和哺乳动物红细胞内的无性发育两个阶段。红细胞内的巴贝虫呈逗点状、环状、梨形、阿米巴状、圆形、卵圆形等，单个或成对排列（双梨形，尖端互相靠近，钝端互成角度），也可为四联形（分成4个，排列成十字形小体）。是巴贝虫病的病原体之一。

4. 1. 3. 10. 2

分歧巴贝虫 *Babesia divergens*

隶属于巴贝虫科。经蜱传播，寄生于红细胞内的一种大型巴贝虫。生活史包括在媒介蜱内的有性繁殖阶段和哺乳动物红细胞内的无性发育两个阶段。是巴贝虫病的病原体之一，患者可出现溶血性贫血，发热、寒战等症状。

4. 1. 3. 10. 3

邓肯巴贝虫 *Babesia duncani*

隶属于巴贝虫科。经蜱传播，寄生于红细胞内的一种小型巴贝虫。生活史包括在媒介蜱内的有性繁殖阶段和哺乳动物红细胞内的无性发育两个阶段。是巴贝虫病的病原体之一，患者可出现类似于疟疾的症状，包括发热、贫血、黄疸等。

4. 1. 3. 10. 4

马耳他十字 *maltese cross*

巴贝虫感染红细胞典型的形态学特征，呈四联体十字型排列。

4. 1. 3. 11

等孢球虫 *Isospora* spp.

隶属于艾美球虫科。为寄生于人体小肠上皮细胞的一种肠道寄生虫。成熟的卵囊为其感染期，卵囊污染食物或饮用水，经口感染人体，引起腹泻。是等孢球虫病的病原体。

4. 1. 3. 11. 1

贝氏等孢球虫 *Isospora belli*

隶属于艾美球虫科。为寄生于人体小肠上皮细胞的一种肠道寄生虫。人类小肠上皮细胞内可存在贝氏囊等孢球虫的裂体增殖期和孢子生殖期虫体。卵囊为感染阶段，呈长椭圆形。是等孢球虫病的病原体之一。

4.1.4

纤毛虫 **Ciliate**

隶属纤毛门。其最显著的特征是在生活史各个阶段都有纤毛。

4.1.4.1

结肠小袋纤毛虫 ***Balantidium coli***

隶属于小袋科。生活史包括滋养体期和包囊期。为人体最大的寄生性原虫。经口食入包囊而感染，寄生于人体结肠内，可侵犯肠壁组织，是结肠小袋纤毛虫病的病原体。

4.2

医学蠕虫 **helminth**

多细胞无脊椎动物，依赖肌肉的收缩进行蠕状运动。蠕虫包括环节动物门、扁形动物门、棘头动物门和线形动物门中的动物。

4.2.1

吸虫 **Trematode**

隶属于扁形动物门的吸虫纲。寄生人体的吸虫属复殖目，成虫通常寄生于脊椎动物体内，以吸盘作为吸附器官的一类扁形动物。

4.2.1.1

血吸虫 ***Schistosoma* spp.**

隶属于裂体科。成虫寄生于人或哺乳动物的静脉内。生活史包括成虫、虫卵、毛蚴、母胞蚴、子胞蚴、尾蚴、童虫等阶段。

4.2.1.1.1

日本血吸虫 ***Schistosoma japonicum***

隶属于裂体科。生活史包括成虫、虫卵、毛蚴、尾蚴、童虫阶段。成虫雌雄异体，虫卵呈椭圆形，外观似线虫。人或动物因接触含有日本血吸虫尾蚴的水体而感染。成虫寄生于宿主的门脉-肠系膜下静脉系统产卵引起肝肠病变。

4.2.1.1.2

埃及血吸虫 ***Schistosoma haematobium***

隶属于裂体科。生活史包括成虫、虫卵、毛蚴、母胞蚴、子胞蚴、尾蚴、童虫等阶段。成虫雌雄异体，虫卵呈纺锤形、有端棘。人或动物因接触含有埃及血吸虫尾蚴的水体而感染。成虫寄生于宿主的膀胱静脉丛、骨盆静脉丛、直肠静脉丛等处产卵引起膀胱及生殖器官病变。

4.2.1.1.3

曼氏血吸虫 ***Schistosoma mansoni***

隶属于裂体科。生活史包括成虫、虫卵、毛蚴、母胞蚴、子胞蚴、尾蚴、童虫等阶段。成虫雌雄异体，虫卵呈长卵圆形、具有大而长的侧棘。人或动物因接触含有曼氏血吸虫尾蚴的水体而感染。成虫主要寄生于肠系膜小静脉、痔静脉丛等处产卵引起肝肠病变。

4.2.1.1.4

湄公血吸虫 ***Schistosoma mekongi***

隶属于裂体科。生活史包括成虫、虫卵、毛蚴、母胞蚴、子胞蚴、尾蚴、童虫等阶段。成虫雌雄异体，虫卵呈卵圆形、具有短侧棘。人或动物因接触含有湄公血吸虫尾蚴的水体而感染。成虫寄生于肠系膜上静脉、门脉系统产卵引起肝肠病变。

4.2.1.1.5

间插血吸虫 *Schistosoma intercalatum*

隶属于裂体科。生活史包括成虫、虫卵、毛蚴、母胞蚴、子胞蚴、尾蚴、童虫等阶段。成虫雌雄异体，虫卵呈纺锤形、具有长的端棘。人或动物因接触含有间插血吸虫尾蚴的水体而感染。成虫寄生于肠系膜静脉、门脉系统产卵引起肝肠病变。

4.2.1.1.6

马来血吸虫 *Schistosoma malayensis*

隶属于裂体科。生活史包括成虫、虫卵、毛蚴、母胞蚴、子胞蚴、尾蚴、童虫等阶段。成虫雌雄异体，虫卵呈卵圆形、具有短小侧棘。人或动物因接触含有马来血吸虫尾蚴的水体而感染。成虫寄生于肠系膜静脉、门脉系统产卵引起肝肠病变。

4.2.1.1.7

几内亚血吸虫 *Schistosoma guineensis*

隶属于裂体科。生活史包括成虫、虫卵、毛蚴、母胞蚴、子胞蚴、尾蚴、童虫等阶段。成虫雌雄异体，虫卵形态与间插血吸虫虫卵相似，呈纺锤形、具有长的端棘。人或动物因接触含有几内亚血吸虫尾蚴的水体而感染。成虫寄生于肠系膜静脉、门脉系统产卵引起肝肠病变。

4.2.1.1.8

血吸虫毛蚴 *miracidium of Schistosoma*

血吸虫幼虫发育中的最早阶段。呈梨形或长椭圆形，左右对称，周身有纤毛，为其活动器官。毛蚴前端有一锥形的顶突，体前部有一顶腺和一对侧腺，开口于虫体前端。腺体分泌物种含有中性黏多糖、蛋白质和酶等物质，是可溶性虫卵抗原的主要成分。

4.2.1.1.9

血吸虫尾蚴 *cercaria of Schistosoma*

血吸虫感染阶段。属叉尾型，由体部及尾部组成，尾部又分尾干和尾叉。体部前端有一头器，内有一单细胞头腺。在腹吸盘周围有五对钻腺，能分泌溶组织酶，以利于尾蚴侵入宿主皮肤。

4.2.1.1.10

血吸虫童虫 *schistosomulum*

尾蚴侵入终宿主皮肤时脱去尾部进入血流，在体内移行直至到达寄生部位发育为成虫前的发育期阶段。

4.2.1.2

肝片形吸虫 *Fasciola hepatica*

隶属于片形科。生活史包括成虫、虫卵、毛蚴、胞蚴、雷蚴、尾蚴、囊蚴、后尾蚴、童虫等阶段。成虫雌雄同体，虫卵甚大，椭圆形，卵的一端有一小盖。人多因生食含囊蚴的水生植物、喝生水或半生食含童虫的牛肝、羊肝等被感染。童虫、成虫是主要的致病虫期，引起肝脏、胆管或胆囊病变。

4.2.1.3

巨片形吸虫 *Fasciola gigantica*

隶属于片形科。生活史包括成虫、虫卵、毛蚴、胞蚴、雷蚴、尾蚴、囊蚴、后尾蚴等阶段。成虫雌雄同体，虫卵甚大，椭圆形，卵的一端有一小盖。人多因生食含囊蚴的水生植物、喝生水等被感染。成虫主要寄生于牛、羊及其他草食动物和人体肝脏胆管内引起病变。

4.2.1.4

布氏姜片吸虫 *Fasciolopsis buski*

隶属于片形科。生活史包括成虫、虫卵、毛蚴、胞蚴、雷蚴、尾蚴、囊蚴、后尾蚴等阶段。成虫雌雄同体，虫卵长椭圆形，是人体中最大的寄生虫卵，两端钝圆，卵壳薄。人或猪因生食含囊蚴的水生植

物或喝生水而感染。成虫是主要的致病虫期，通过其吸盘吸附于肠黏膜引起机械性损伤，以及由虫体代谢产物引起的超敏反应，导致肠道病变。

4.2.1.5

棘口吸虫 *Echinostomas*

隶属于棘口科。生活史包括成虫、虫卵、毛蚴、胞蚴、雷蚴、尾蚴、囊蚴、童虫等阶段。成虫雌雄同体，虫卵较大呈椭圆形，卵壳薄，一端有一小盖。动物或人因食入含囊蚴的淡水鱼、蛙及螺类，或生食囊蚴污染的水生植物和喝生水而感染。成虫多寄生于禽、畜、人小肠上段引起炎症病变。

4.2.1.6

矛形双腔吸虫 *Dicrocoelium lanceatum*

隶属于双腔科。生活史包括成虫、虫卵、毛蚴、母胞蚴、子胞蚴、尾蚴、囊蚴、后尾蚴等阶段。成虫雌雄同体，虫体狭长呈矛形，体后半部稍宽。人因误食含囊蚴的中间宿主（如蜗牛或蚂蚁）而感染。成虫主要寄生于牛、羊等多种反刍动物和人体的肝脏、胆管和胆囊内引起病变。

4.2.1.7

中华双腔吸虫 *Dicrocoelium chinensis*

隶属于双腔科。生活史包括成虫、虫卵、毛蚴、母胞蚴、子胞蚴、尾蚴、囊蚴、后尾蚴等阶段。成虫雌雄同体，虫体较宽扁，其前方体部呈头锥状，后两侧呈肩样突。动物或人因食入含囊蚴的中间宿主而感染。成虫主要寄生于牛、羊等多种反刍动物和人体的肝脏、胆管和胆囊内引起病变。

4.2.1.8

胰阔盘吸虫 *Eurytrema pancreaticum*

隶属于双腔科。生活史包括成虫、虫卵、毛蚴、母胞蚴、子胞蚴、尾蚴、囊蚴、童虫等阶段。成虫雌雄同体，虫体较大，呈椭圆形至纺锤形。口吸盘较腹吸盘大。牛、羊等多种反刍动物和人因吞食含有成熟囊蚴的草螽而感染，成虫主要寄生在终宿主的胆道和胰管引起病变。

4.2.1.9

腔阔盘吸虫 *Eurytrema coelomaticum*

隶属于双腔科。生活史包括成虫、虫卵、毛蚴、母胞蚴、子胞蚴、尾蚴、囊蚴、童虫等阶段。成虫雌雄同体，呈短椭圆形，体后端常有一明显的尾突。牛、羊等多种反刍动物因吞食含有成熟囊蚴的草螽而感染，成虫主要寄生在终宿主的胰脏、胰管引起病变。

4.2.1.10

枝睾阔盘吸虫 *Eurytrema cladorchis*

隶属于双腔科。生活史包括成虫、虫卵、毛蚴、母胞蚴、子胞蚴、尾蚴、囊蚴、童虫等阶段。成虫雌雄同体，呈前端尖、后端钝的瓜子形。虫卵椭圆形、具卵盖。牛、羊等多种反刍动物因吞食含有成熟囊蚴的针蟋而感染，成虫主要寄生在终宿主的胰管引起病变。

4.2.1.11

卫氏并殖吸虫 *Paragonimus westermani*

隶属于并殖科。生活史包括成虫、虫卵、毛蚴、胞蚴、母雷蚴、子雷蚴、尾蚴、囊蚴、后尾蚴及童虫等阶段。成虫雌雄同体，虫卵椭圆形、左右多不对称、有扁平卵盖。人或其他肉食类哺乳动物因食入含有活囊蚴的溪蟹、蝲蛄，或因生食转续宿主的肉及其制品而感染。致病主要是由童虫在组织器官中移行、串扰和成虫寄居或移行所造成的机械性损伤及其代谢产物所致的免疫病理反应所引起，以在宿主肺部形成囊肿为主要病变。

4.2.1.12

斯氏并殖吸虫 *Paragonimus skrjabini*

隶属于并殖科。生活史包括成虫、虫卵、毛蚴、胞蚴、母雷蚴、子雷蚴、尾蚴、囊蚴、后尾蚴及童虫等阶段。成虫雌雄同体，虫卵椭圆形、左右多不对称、有扁平卵盖。人或其他肉食类哺乳动物因食入含有活囊蚴的溪蟹、石蟹，或因生食转续宿主的肉及其制品而感染。人不是适宜宿主，侵入人体的虫体多处于童虫状态，引起幼虫型肺吸虫病为特征的幼虫移行症，造成多个器官或者全身损害。

4.2.1.13

宫崎并殖吸虫 *Paragonimus miyazakii*

隶属于并殖科。主要寄生于人和犬、猫、猪等哺乳动物肺部的一种吸虫。新鲜虫体呈肉红色肥厚泡状体，两侧较深、中间无色透明。体表满布体棘，群生型，呈尖刀状并列成簇。仅在中国分布，为宫崎并殖吸虫病的病原体。

4.2.1.14

三平正并殖吸虫 *Euparagonimus cenocopiosus*

隶属于并殖科。主要寄生于肺部的一种吸虫。成虫前宽后窄，最宽约在体前1/3处，全身有体棘，以分簇排列为主。口吸盘位于前端，腹吸盘大于口吸盘。排泄囊从体后向前伸展，到达腹吸盘为止，为该虫最重要的特征。为三平正并殖吸虫病的病原体。

4.2.1.15

华支睾吸虫 *Clonorchis sinensis*

隶属于后睾科。生活史包括成虫、虫卵、毛蚴、胞蚴、雷蚴、尾蚴、囊蚴、幼虫等阶段。成虫雌雄同体，虫卵略似芝麻形、前端较窄有小盖，盖两旁有肩峰，后端钝圆有一结节样小疣。人、猫和犬等因生吃或半生吃含囊蚴的淡水鱼虾而感染。成虫寄生于人类哺乳动物的肝胆管内引起肝胆管病变。

4.2.1.16

猫后睾吸虫 *Opisthorchis felineus*

隶属于后睾科。生活史包括成虫、虫卵、毛蚴、胞蚴、雷蚴、尾蚴、囊蚴、后尾蚴等阶段。成虫雌雄同体，外形似华支睾吸虫但略小，虫卵长椭圆形、有卵盖、无肩峰。人和猫、犬、狐等哺乳动物因生食或半生食含有活囊蚴的鱼肉而感染。成虫寄生于终宿主的肝胆管和胆囊内引起肝胆病变。

4.2.1.17

麝猫后睾吸虫 *Opisthorchis viverrini*

隶属于后睾科。生活史包括成虫、虫卵、毛蚴、胞蚴、雷蚴、尾蚴、囊蚴、后尾蚴等阶段。成虫雌雄同体，形态与猫后睾吸虫相似，虫卵与华支睾吸虫相似。人和猫、犬等哺乳动物因生食或半生食含有活囊蚴的鱼肉而感染。成虫寄生于终宿主的肝胆管和胆囊内引起肝胆病变。

4.2.1.18

异形异形吸虫 *Heterophyes heterophyes*

隶属于异形科。生活史包括成虫、虫卵、毛蚴、胞蚴、雷蚴、尾蚴、囊蚴、后尾蚴等阶段。成虫雌雄同体，虫卵有卵盖。人和动物因吞食含有囊蚴的淡水鱼或蛙而感染。成虫寄生于终宿主的肠道，导致肠道病变。虫卵可被带至各种组织或器官，如脑、脊髓、肝、脾、肺、心肌等引起急性或慢性损害。

4.2.1.19

横川后殖吸虫 *Metagonimus yokogawai*

隶属于异形科。生活史包括成虫、虫卵、毛蚴、胞蚴、雷蚴、尾蚴、囊蚴、后尾蚴等阶段。成虫雌雄同体，虫卵有卵盖。人和动物因吞食含有囊蚴的淡水鱼而感染。成虫寄生于终宿主的肠道，导致肠道病变。

4.2.2

绦虫 Cestode

隶属扁形动物门的绦虫纲，其成虫主要形态特征为背腹扁平、带状分节。绦虫营寄生生活，绝大多数绦虫成虫寄生在脊椎动物的消化道中，虫卵自子宫孔排出或随孕节脱落而排出。

4.2.2.1

裂头蚴 **sparganum**

寄生于各种脊椎动物（包括人类）的肌肉内或皮下假叶目绦虫的幼虫阶段。

4.2.2.2

细粒棘球绦虫 **Echinococcus granulosus**

包生绦虫

隶属于带科。成虫寄生于犬科食肉动物的小肠，幼虫（棘球蚴）寄生于人和多种食草类家畜及其他动物的肝、肺、脑等器官组织中。人误食虫卵后，卵内六钩蚴发育为棘球蚴，是囊型棘球蚴病的病原体。

4.2.2.2.1

棘球蚴 **hydatid cyst**

棘球蚴为单房性囊，由囊壁和囊内容物（生发囊、原头蚴、囊液等）组成。由棘球绦虫的虫卵在中间宿主小肠内释放出六钩蚴，钻入肠壁微血管经门静脉至肝、肺等部位后寄生、发育形成的中绦期（幼虫期）。

4.2.2.2.2

原头蚴 **protoscolex**

原头节

棘球蚴囊生发层以芽生方式形成的一种圆形或椭圆形结构。头节向内翻卷收缩，包裹内陷的顶突和吸盘，顶突周围具数十个吻钩，但无顶突腺。

4.2.2.2.3

子囊 **daughter cyst**

由母囊的生发层直接长出，也可由原头蚴或生发囊进一步发育而成的具有角皮层和生发层的一种囊结构，其内也可长出原头蚴、生发囊或孙囊。

4.2.2.2.4

生发囊 **brood capsule**

育囊

由生发层的有核细胞发育而来的仅有一层生发层的小囊。小囊壁可向内长出数量不等的原头蚴，多者可达30-40个。

4.2.2.2.5

角皮层 **cuticle layer**

为棘球蚴囊壁的外层，无细胞结构而呈多层纹理状，厚约1mm，乳白色，半透明，似粉皮状，较脆弱，为虫体的保护层。

4.2.2.2.6

生发层 **germinal layer**

胚层

为棘球蚴囊壁的内层，有细胞核，厚约20μm。由具有生发功能的单层细胞组成，有显著的繁殖能力，向囊内可生出原头蚴。

4.2.2.2.7

棘球蚴液 **hydatid fluid**

囊液

棘球蚴囊腔内的无色透明或淡黄色液体，内含蛋白质、肌醇、卵磷脂、尿素及少量糖、无机盐和酶等成分，具有抗原性。

4.2.2.3

多房棘球绦虫 *Echinococcus multilocularis*

隶属于带科。成虫主要寄生于狐和犬等食肉动物肠道内。幼虫期是多房棘球蚴（亦称泡球蚴），主要寄生于野生啮齿类动物体内，亦可见于食虫目等其他小型哺乳动物。人因误食虫卵而感染，是泡型棘球蚴病的病原体。

4.2.2.4

多头带绦虫 *Taenia Multiceps*

隶属于带科。成虫寄生于犬、狼、狐狸等犬科动物的小肠内，幼虫常寄生在脑和脊髓中。人因误食虫卵而感染，虫卵孵化后，六钩蚴穿过肠壁随血流分布至脑、眼、肌肉和皮下组织等部位，发育为多头蚴，是多头蚴病的病原体。

4.2.2.5

链状带绦虫 *Taenia solium*

猪带绦虫

隶属于带科。人为其唯一的终宿主，亦可作为其中间宿主；猪和野猪是重要的中间宿主。成虫寄生在人的小肠上段。其幼虫和成虫均可引起人类疾病。人因食入含活囊尾蚴的猪肉，或虫卵、孕节而感染，是猪带绦虫病与囊尾蚴病的病原体。

4.2.2.6

猪囊尾蚴 *cysticercus cellulosae*

囊虫胚层

猪带绦虫的幼虫阶段。呈卵圆形，具有囊壁和球形头节。人经口食入含虫卵的食物后，虫卵在人体内可发育为囊尾蚴，并在皮下组织、肌肉和中枢神经系统等处形成结节。

4.2.2.7

肥胖带绦虫 *Taenia saginata*

牛带绦虫

隶属于带科。中间宿主为牛科动物，唯一的终宿主为人。成虫寄生于人小肠内。人食入生或半生的有感染性囊尾蚴的牛肉后可引起牛带绦虫病。

4.2.2.8

亚洲带绦虫 *Taenia asiatica*

隶属于带科。中间宿主主要为猪、野猪、牛、羊及一些野生动物，唯一的终宿主为人。成虫寄生于人的小肠，人因食入含有活囊尾蚴的猪或其他野生动物的肉和内脏而感染，是亚洲带绦虫病的病原体。其幼虫也可寄生于人体。

4.2.2.9

微小膜壳绦虫 *Hymenolepis nana*

隶属于膜壳科。成虫寄生在鼠类或人的小肠。生活史可以不需要中间宿主，由虫卵直接感染人体；亦可经过中间宿主完成其生活史，人因误食含似囊尾蚴的中间宿主昆虫而感染，是微小膜壳绦虫病的病原体。

4.2.2.10

缩小膜壳绦虫 *Hymenolepis diminuta*

隶属于膜壳科。生活史与微小膜壳绦虫相似，但发育过程必须经过中间宿主。成虫寄生在终宿主（如鼠类）的小肠中，人因误食含有似囊尾蚴的昆虫而感染，是缩小膜壳绦虫病的病原体。

4.2.2.11

克氏假裸头绦虫 *Pseudanoplocephala crawfordi*

隶属于膜壳科。生活史相对复杂，需要多个宿主来完成其生活史。成虫主要寄生于猪、野猪或褐家鼠的小肠内，较少寄生人体。人因偶然误食赤拟谷盗等昆虫而感染，是克氏假裸头绦虫病的病原体。

4.2.2.12

曼氏迭宫绦虫 *Spirometra mansoni*

隶属于裂头科。主要寄生在猫科动物小肠内。生活史复杂，需要3~4个宿主完成其生活史。成虫较少寄生人体，但中绦期裂头蚴可经口、皮肤、黏膜感染人体，是曼氏裂头蚴病的病原体。

4.2.2.13

阔节裂头绦虫 *Diphyllobothrium latum*

隶属于裂头科。虫体可达十多米。生活史复杂且涉及多个宿主，主要寄生于犬科食肉动物等的小肠中，是感染人类最大的绦虫。人因误食生或半生的含裂头蚴的鱼肉而感染，是阔节裂头绦虫病的病原体。

4.2.2.14

司氏伯特绦虫 *Bertiella studeri*

隶属于裸头科。成虫主要寄生于终宿主猴、猩猩等灵长类动物的小肠内，偶可寄生于人体小肠。中间宿主主要为土壤螨类或甲螨。人因误食含似囊尾蚴的螨而感染，是司氏伯特绦虫病的病原体。

4.2.3

线虫 Nematode

隶属于线形动物门，虫体多呈圆柱形，体不分节。雌、雄异体，发育分为虫卵、幼虫、成虫三个阶段。这些病原线虫通常寄生于人体的肠道、血液、淋巴系统或其他组织中。

4.2.3.1

似蛔线虫 *Ascaris lumbricoides*

蛔虫

隶属于蛔科。成虫圆柱形，似蚯蚓。蛔虫属于土源性线虫，完成生活史不需要中间宿主。经口食入感染期卵而感染，幼虫和成虫均可致病。

4.2.3.2

犬弓首线虫 *Toxocara canis*

隶属于弓首科。成虫虫体前段两侧有狭长的颈翼膜，呈刀片状。成虫主要寄生于犬的小肠，可引起犬蛔虫病。其幼虫也可感染人，引起内脏幼虫移行症，也可引起眼幼虫移行症。

4.2.3.3

猫弓首线虫 *Toxocara cati*

隶属于弓首科。成虫寄生于猫的小肠，引起猫蛔虫病。亦可感染人，幼虫引起内脏幼虫移行症或眼幼虫移行症，成虫在小肠内可引起肠道症状。

4.2.3.4

毛首鞭形线虫 *Trichuris trichiura*

鞭虫

隶属于鞭虫科。成虫外形似马鞭。经口食入感染期卵而感染，成虫主要寄生于人体的盲肠，是鞭虫病的病原体。

4.2.3.5

蠕形住肠线虫 *Enterobius vermicularis*

蛲虫

隶属于尖尾科。成虫细小，呈乳白色，雌雄异体。主要感染途径包括食入感染期虫导致的自体重复感染（肛门-手-口）、间接接触、空气吸入和经肛逆行感染。成虫主要寄生于人的盲肠、结肠以及回肠下部，是蛲虫病的病原体。

4.2.3.6

十二指肠钩口线虫 *Ancylostoma duodenale*

隶属于钩口科。土源性线虫感染的优势虫种。除经皮肤、口腔和食管黏膜感染外，其幼虫可经胎盘进入胎儿体内。成虫主要寄生于人体小肠，特别是十二指肠，引起消化道和贫血等症状。丝状蚴侵入皮肤和幼虫在人体内移行造成损害。

4.2.3.7

美洲板口线虫 *Necator americanus*

隶属于钩口科。生活史与十二指肠钩口线虫基本相似。成虫寄生于人体小肠。人通过接触被污染的土壤和感染期幼虫而感染，是钩虫病的病原体。

4.2.3.8

粪类圆线虫 *Strongyloides stercoralis*

隶属于类圆科。一种兼性寄生虫，生活史包括自生世代和寄生世代。在寄生世代中，成虫主要寄生在宿主小肠，机体免疫力下降时幼虫可侵入肺、脑、肝、肾等组织器官，是粪类圆线虫病的病原体。

4.2.3.9

旋毛形线虫 *Trichinella spiralis*

旋毛虫

隶属于毛形科。成虫主要寄生于宿主的十二指肠和空肠上段。幼虫寄生于宿主的骨骼肌细胞内，是主要致病阶段。人和多种哺乳动物可作为该虫的宿主。人类通过食用含有活幼虫囊包的肉类而感染，是旋毛虫病的病原体。

4.2.3.10

班氏吴策线虫 *Wuchereria bancrofti*

班氏丝虫

隶属于盘尾科。微丝蚴具鞘膜、头间隙长宽相等、体核分布均匀、无尾核。幼虫阶段在中间宿主蚊体内发育，成虫阶段在终宿主人体内发育。成虫细长线状，寄生于人体的淋巴系统。通过蚊虫叮咬传播，是班氏丝虫病的病原体。

4.2.3.11

奥氏曼森线虫 *Mansonella ozzardi*

奥氏丝虫

隶属于盘尾科。微丝蚴无鞘膜、头间隙长、体纤细、体核少、无尾核、尾端弯曲。通过含感染期幼虫的库蠓叮咬感染人体。成虫虫体纤细，主要寄生于体腔、肠系膜或内脏的脂肪组织，是奥氏丝虫病的病原体。

4.2.3.12

常现唇棘线虫 *Dipetalonema perstans*

常现丝虫

隶属于盘尾科。微丝蚴无鞘膜、头间隙长宽约相等、体核分布至尾端、尾钝圆。通过感染期幼虫的库蠓叮咬感染人体。成虫细长线状，主要寄生于人体的体腔、腹腔，偶见于心包腔，是常现丝虫病的病原体。

4.2.3.13

链尾唇棘线虫 *Dipetalonema streptocerca*

链尾丝虫

隶属于盘尾科。微丝蚴无鞘膜、头间隙长、尾部弯曲、体核较少、有尾核。通过感染期幼虫的库蠓叮咬感染人体。成虫呈细丝状，寄生于人体皮下组织内，是链尾丝虫病的病原体。

4.2.3.14

马来布鲁线虫 *Brugia malayi*

马来丝虫

隶属于盘尾科。微丝蚴具鞘膜、头间隙长:宽=2:1、体核不均、有尾核。通过含感染期幼虫的蚊虫叮咬感染人体。微丝蚴在外周血中呈夜现周期性。成虫呈丝线状，寄生于人体的淋巴系统，是马来丝虫病的病原体。

4.2.3.15

帝汶布鲁线虫 *Brugia timori*

帝汶丝虫

隶属于盘尾科。微丝蚴具鞘膜、头间隙长:宽=3:1、有尾核。成虫呈细线状。通过含感染期幼虫蚊虫叮咬感染人体。成虫寄生于人体的淋巴系统。是帝汶丝虫病的病原体。

4.2.3.16

旋盘尾线虫 *Onchocerca volvulus*

盘尾丝虫

隶属于盘尾科。微丝蚴无鞘膜、头间隙长宽相等、无尾核。成虫呈丝线状。通过含感染期幼虫的蚋叮咬感染人体。成虫寄生于皮下组织的淋巴汇合处，微丝蚴可侵入眼部或皮下，是盘尾丝虫病的病原体。

4.2.3.17

罗阿罗阿线虫 *Loa loa*

罗阿丝虫

隶属于盘尾科。微丝蚴具鞘膜、头间隙长宽相等、核分布至尾尖部。成虫为白色线状，微丝蚴在外周血中呈昼现周期性。通过含感染期幼虫斑虻叮咬感染人体。成虫主要寄生于人体皮下组织，是罗阿丝虫病的病原体。

4.2.3.18

犬恶丝虫 *Dirofilaria immitis*

隶属于盘尾科。成虫细长，寄生于犬、犬科动物等的右心和肺动脉内。人是非适宜宿主，因被含感染期幼虫的蚊虫叮咬而感染，幼虫在人体肺、皮下及眼内移行寄生，是恶丝虫病的病原体。

4.2.3.19

广州管圆线虫 *Angiostrongylus cantonensis*

隶属于管圆科。成虫交合伞腹肋是鉴定虫种的主要依据之一。生活史包括成虫、卵和幼虫3个阶段。成虫寄生于鼠类肺部血管，幼虫寄生于福寿螺、褐云玛瑙螺和黄蛞蝓等淡水或陆生软体动物。人是非适宜宿主，因生食或半生食含第三期幼虫的中间宿主或转续宿主而感染，幼虫移行至中枢神经系统可引起嗜酸性粒细胞增多性脑膜脑炎或脑膜炎。

4.2.3.20

东方毛圆线虫 *Trichostrongylus orientalis*

隶属于毛圆科。虫体细长线状，头端钝圆。成虫寄生于绵羊、骆驼、马、牛和驴等食草动物的胃和小肠内，偶可寄生于人体。丝状蚴经口或经皮肤感染人体，是东方毛圆线虫病的病原体。

4.2.3.21

美丽筒线虫 *Gongylonema pulchrum*

隶属于筒线科。成虫细长如线，在人体内寄生的虫体，体表有纤细横纹。偶尔感染人，人因误食含感染期幼虫的昆虫或饮用被感染期幼虫污染的水源而感染。成虫寄生于人口腔、咽喉和食管的黏膜或黏膜下层，是美丽筒线虫病的病原体。

4.2.3.22

肝毛细线虫 *Capillaria hepatica*

隶属于毛细科。成虫纤细，常寄生于鼠类和多种哺乳动物。偶尔感染人。人因食入感染期卵污染的食物或水而感染。成虫寄生于肝脏，是肝毛细线虫病的病原体。

4.2.3.23

菲律宾毛细线虫 *Capillaria philippinensis*

隶属于毛细科。成虫纤细，食管肌部短，寄生于多种哺乳动物的肠道，偶然寄生于人体。人因进食生或半生含有感染期幼虫的淡水鱼而感染，成虫寄生在人体肠道，是毛细线虫病的病原体。

4.2.3.24

棘颚口线虫 *Gnathostoma spinigerum*

隶属于颚口科。成虫圆柱形，体表有体棘。成虫寄生于哺乳动物的胃、食管、肝脏和肾脏。人是非适宜宿主，因生食或半生食含第三期幼虫的淡水鱼或转续宿主而感染。幼虫可寄生于人体，是皮肤和内脏颚口线虫病的病原体。

4.2.3.25

异尖线虫 *Anisakis*

隶属于异尖科。成虫寄生于海栖哺乳动物胃部，幼虫寄生于海栖鱼类的一类线虫。人是非适宜宿主，因生食或半生食含有感染性幼虫的海鱼而感染。幼虫寄生于人体消化道，是异尖线虫病的病原体。

4.2.3.26

麦地那龙线虫 *Dracunculus medinensis*

隶属于龙线虫科。大型线虫，成虫形似粗白线，尾端向腹面呈鱼钩状弯曲，寄生于人和多种哺乳动物组织内。人经口食入含感染期幼虫的剑水蚤而感染，雌虫移行至人体皮肤时可致皮肤破溃，是龙线虫病的病原体。

4.2.3.27

铁线虫 *Gordius* spp.

隶属于铁线虫科。成虫细长，似铁丝，体壁极为粗糙，体表有花纹或小突起。成虫在水中营自生生活，偶可感染人。人因饮入含有感染性幼虫的水或食入含有感染性幼虫的无脊椎动物（如水生昆虫、螺蛳等）而感染，虫体寄生于消化道或泌尿生殖道，是铁线虫病的病原体。

4.2.3.28

泡翼线虫 *Physaloptera* spp.

隶属于泡翼科。成虫圆柱形，体表有横纹，头端有6个乳突和1对侧化感器，唇内有3对齿。人可能因食入含感染性幼虫的昆虫或转续宿主而感染，成虫寄生于消化道，是泡翼线虫病的病原体。

4.3

医学节肢动物 medical arthropod

动物界中种类最多、数量最大、分布最广的一类动物。特点为有分节的身体和关节附肢，身体表面覆盖着几丁质的外骨骼。通过骚扰、螫刺、吸血、毒害、寄生和传播病原体等方式危害人畜健康。

4.3.1

中华按蚊 *Anopheles sinensis*

隶属于蚊科。翅前缘有明显的亚缘白斑和亚端白斑，前缘基段无白斑，腹部侧膜有T形暗斑。中肢基节有白斑，V5-2翅端白斑。是疟疾和马来丝虫病的传播媒介。主要分布于我国和东南亚地区。

4.3.2

雷氏按蚊 *Anopheles lesteri*

嗜人按蚊 *Anopheles anthropophagus*

隶属于蚊科。嗜吸人血。翅前缘脉基部通常一致黑色，膊横脉无鳞，腹部侧膜无T形暗斑，中肢基节无白斑，V5-2无翅端白斑。是我国北纬34°以南低山丘陵地区疟疾与马来丝虫病的主要媒介。

4.3.3

微小按蚊 *Anopheles minimus*

隶属于蚊科。雌蚊触须有3个白环，端白环与亚端白环通常接近等宽。是东南亚疟疾的重要媒介之一。国内分布于北纬33°以南诸省（区），曾在北纬25°区域多见，是我国南方山地和丘陵地区疟疾的主要媒介。

4.3.4

大劣按蚊 *Anopheles dirus*

隶属于蚊科。灰褐色中型蚊种。雌蚊触须有4个白环，顶端白环最宽，翅前缘脉有6个白斑，各足股节和胫节均有白斑，后足胫节和第一跗节关节处有一明显宽白环。主要滋生在丛林边缘荫蔽的溪床、积水、浅潭、小池等处。是热带丛林型按蚊，为海南山林和山麓地区以及云南边境森林地区疟疾的重要媒介。

4.3.5

杰普尔按蚊 *Anopheles jeyporiensis*

杰普尔按蚊日月潭亚种 *Anopheles jeyporiensis candidiensis*

隶属于蚊科。灰褐色小型蚊种，中胸盾片具显著白鳞，跗节有明显白环。喙一致暗色。栖息于植被浓密处，幼虫多滋生在植被浓密的清凉静水或溪流。主吸牛血，兼吸人血。亚洲广泛分布，是我国南方山区和台湾地区疟疾的媒介，是东南亚部分地区疟疾和班氏丝虫的传播媒介。

4.3.6

伪威氏按蚊 *Anopheles pseudowillmori*

隶属于蚊科。灰褐色，腹节背板I-VII无鳞片，背板VIII覆盖白鳞，其侧后角常具少量黑鳞，纵脉2基柄段与分叉段的长度比例等为鉴别特征。其形态特征不稳定，还需分子检测。主要分布于我国广西、云南、西藏等地区，是疟疾的传播媒介。

4.3.7

斯氏按蚊 *Anopheles stephensi*

隶属于蚊科。棕褐色，足股、胫和跗节有1明显白斑，后跗节全黑。喙除唇瓣外，一致黑色或暗色。成蚊栖息于稻田、沟渠等静水处，幼虫主要滋生在容器积水，也见于水坑水池等。白天吸人血和家畜血。最初分布于南亚、中东和阿拉伯半岛的部分地区，具极强侵入能力。在我国为罕见蚊种，是部分城市型疟疾媒介。

4.3.8

淡色库蚊 *Culex pipiens pallens*

隶属于蚊科。尖音库蚊淡色亚种。淡褐色中型蚊种，喙与足深褐色，无白环。在污水池、臭水沟、下水道积水等处滋生，多夜间出没。主要分布在北纬34°以北的地区。为班氏丝虫的主要媒介。

4.3.9

致倦库蚊 *Culex pipiens quinquefasciatus*

隶属于蚊科。尖音库蚊致倦亚种。幼虫在“污水型”环境中生存，成虫多夜间出没，室内最常见。与尖音库蚊和淡色库蚊形态相似。主要分布在北纬32°以南的地区，为班氏丝虫的主要媒介。

4.3.10

埃及伊蚊 *Aedes aegypti*

隶属于蚊科。黑色，两肩侧有一对长柄镰刀形白斑，中间一对纵条线贯穿整个背板，多滋生在居民点及其周围的容器以及石穴等小型积水中。主要在白天吸血，嗜吸人血。起源于非洲，目前扩散至美洲、澳洲和东南亚等地区。我国云南边境、海南岛和雷州半岛也有分布。为丝虫病的主要传播媒介。

4.3.11

中华白蛉 *Phlebotomus chinensis*

隶属于白蛉科。成虫较小，复眼大而黑，触角细长，口甲、色板和咽甲的形态为其主要鉴别特征。翅狭长末端尖，上被长毛。停息时两翅向背面竖立呈“V”字形。足细长多毛。我国长江以北地区多见，为内脏利什曼病的主要传播媒介。

4.3.12

长管白蛉 *Phlebotomus longiductus*

隶属于白蛉科。咽甲板齿较大且稀疏，多排列规则，板齿较宽三角形，越往外越大。分布于新疆古老绿洲和天山山地。是我国人源型内脏利什曼病的主要传播媒介。

4.3.13

亚历山大白蛉 *Phlebotomus alexandri*

隶属于白蛉科。咽甲有楔形板齿构成，板齿较大，并向内侧和后部倾斜，中央板齿细小如梭形，直立排列。主要分布在新疆、甘肃和内蒙古。是我国动物源型内脏利什曼病的传播媒介。

4.3.14

吴氏白蛉 *Phlebotomus wui*

隶属于白蛉科。雌蛉咽甲前部有短小针尖形小刺，基部有横脊。野外洞穴栖居型蛉种，主要分布在新疆和内蒙古额济纳旗荒漠地带，亦见于甘肃西部的疏勒河盆地荒漠。是我国动物源型内脏利什曼病的传播媒介。

4.3.15

五条蚋 *Simulium quinquestriatum*

隶属于蚋科。雌虫中胸盾片具5条暗色纵纹，生殖板腹突明显。雄虫生殖腹板马鞍状，腹中突显著，中骨宽板状，端圆。呼吸丝10条，短于蛹体，基段不膨胀。茧靴状，前缘具花篮状结构。幼虫和蛹滋生在路边或田边水沟、水渠内的草叶、石块或枯枝落叶上。主要分布于我国辽宁、福建、江西、广东、广西、台湾、湖南、贵州、四川、云南、西藏、安徽等地，是人类和其他脊椎动物寄生虫的中间宿主及传播媒介，如盘尾丝虫。

4.3.16

毛足原蚋 *Prosimulium hirtipes*

隶属于蚋科。成虫体色黑，体毛短而稀疏，淡黄色。雌虫生殖板舌状，内缘直。雄虫生殖肢端节圆锥形，具3个端刺。生殖腹板横宽，后缘中凹呈槽状。中骨短，末端分叉。蛹呼吸丝16条。幼期滋生在林区或山区水域，以幼虫越冬，5月下旬至6月上旬羽化，叮咬人畜。为多种寄生虫的中间宿主和传播媒介，如盘尾丝虫。主要分布在欧洲、北非等地。

4.3.17

宽角黄虻 *Atylotus fulvus*

隶属于虻科。成虫复眼光裸，具1窄带；额具很小的基胛和中胛，头顶具浅色短毛和黑毛；触角鞭节宽短；足黄棕色；翅脉具长附脉；腹部背板中央1/3灰色。雌虻钉刺人、马、牛、犬、羊。主要分布在欧洲、亚洲和北美洲。在我国见于新疆。对家畜和人类造成骚扰，并可能成为丝虫病传播的媒介。

4.3.18

高额麻虻 *Haematopota pluvialis*

隶属于虻科。成虫额基宽约等于额高，基胛窄条形，触角柄节非卵圆形，中部腹缘膨大，上侧颜具散在黑点，各胫节具2个浅棕色环。分布于新疆，为草原虻。可传播伊凡锥虫病，引起牛、马、驴、骆驼和犬感染；也可传播野兔热和炭疽病。

4.3.19

家蝇 *Musca domestica*

隶属于家蝇科。常见蝇种。灰褐色，胸部背面有4条黑色纵纹；翅第4纵脉末端向上急弯成折角，尖端与第3纵脉靠近；腹部橙黄色，并具有黑色纵条。多在室内活动，繁殖力强。在中国分布甚广，是多种疾病的重要机械性传播者，能引起消化道、呼吸道、神经系统和眼部的疾病。

4.3.20

丝光绿蝇 *Lucilia sericata*

隶属于丽蝇科。呈绿色金属光泽，颊部银白色，胸背部鬃毛发达，腋瓣上无毛。幼虫尸食性，成虫对腥臭的鱼肉最敏感。雌蝇喜在脓疮、伤口、腐败的动物尸体等处产卵。广泛分布于除南极洲之外的亚非欧美各大陆。

4.3.21

厩腐蝇 *Muscina stabulans*

隶属于家蝇科。家蝇科中较重要的种类。胸部背面有4条暗黑色条纹，中央2条较明显，翅第4纵脉末端呈弧形。腹部具或浓或淡的斑。常滋生人、畜粪中（特别是地表人粪块中）。幼虫在人体肠道寄生引起胃肠蝇蛆症。

4.3.22

印鼠客蚤 *Xenopsylla cheopis*

隶属于蚤科。眼发达，眼鬃列2根，眼鬃位于眼前方，头部宽圆，无额突和额鬃列。下唇须长，可达前足基节末端。无颊栉和前胸栉。主要寄生于黄胸鼠、褐家鼠、黑家鼠等家栖鼠，也可寄生于小家鼠、针毛鼠、社鼠、黄毛鼠、黑线仓鼠、黑线姬鼠、达乌尔黄鼠、臭鼩鼱等。为家鼠鼠疫和人间鼠疫最重要的传播媒介，可传播鼠型斑疹伤寒和绦虫病，是缩小膜壳绦虫的中间宿主。在我国除宁夏、新疆、西藏无记录外，广泛分布。

4.3.23

人蚤 *Pulex irritans*

隶属于蚤科。眼大色深而圆。眼鬃列2根，位于眼前下方。下颚内叶宽短，锯齿发达。无颊栉和前胸栉，颊叶发达。人蚤的主要宿主有人、犬、猪、猫、狼、狐、獾、鼬、貂、旱獭等。是犬复殖绦虫和长膜壳绦虫的中间宿主，叮咬人、畜致瘙痒、红斑和溃疡等。为鼠疫的次要媒介。在我国分布广泛。

4.3.24

猫栉首蚤 *Ctenocephalides felis*

隶属于蚤科。眼大，眼鬃列2根，眼鬃位于眼前方。头部较长，额缘较倾斜，与颊部的腹缘夹角为锐角，颊栉发达，一般8根。寄生于家猫、犬、黄鼬、野猫、椰子猫、貂、狐、黄胸鼠、家兔、野兔、人等。叮刺吸血危害人畜。犬复殖绦虫的中间宿主。在中国，除宁夏、新疆和西藏外，几乎遍布全国各地。

4.3.25

剑水蚤 Cyclops

隶属于剑水蚤科。体细小。头胸部卵圆形，占虫体的大部分。第一触角大，用以游泳。游泳肢五对，前四对二分枝而多刚毛。腹部细长，圆柱形，尾叉各有一簇尾毛。无鳃，通常无心脏。全球广泛分布。是曼氏迭宫绦虫、阔节裂头绦虫、麦地那龙线虫等的中间宿主。

4. 3. 26

人虱 Pediculus humanus

隶属于虱科。灰色或灰白色，头略呈橄榄形，颈小可动，触角短，眼较小不发达，位于触角后的两侧，刺吸式口器，胸节融合不能区分。雄性背刚毛甚粗壮，长度均明显大于腹刚毛。分为人体虱和人头虱两个亚种。叮咬人，致局部皮肤出现瘙痒和丘疹，可传播流行性斑疹伤寒、战壕热，虱媒回归热等。全球分布。

4. 3. 27

耻阴虱 Pthirus pubis

隶属于阴虱科。体型小于体虱、头虱。头短，触角较头部稍长，眼位于触角后突上。卵产于阴毛根部，椭圆形，红褐色或铁锈色。耻阴虱和虱卵常随阴毛脱落污染内裤、毛巾、床单、马桶等，接触后传染。全球分布。

4. 3. 28

温带臭虫 Cimex lectularius

隶属于臭虫科。体扁宽，红褐色，翅退化呈鳞状，前胸前缘凹入较深，柏氏器呈管状，外观不明显。有臭腺，分泌物有特殊气味。在人居室内繁殖，嗜吸人血，叮咬后引起瘙痒或过敏。全球分布。

4. 3. 29

热带臭虫 Cimex hemipterus

隶属于臭虫科。虫体扁平，椭圆形，红褐或淡红色，具短毛。头部较宽，嵌于前胸前缘。前胸前缘凹入较浅，柏氏器呈块状，色深，外观明显。在人居室内繁殖，嗜吸人血。主要分布于华南、台湾等热带地区。叮咬后引起瘙痒或过敏。

4. 3. 30

美洲大蠊 Periplaneta americana

隶属于蜚蠊科。中大型昆虫。长椭圆形，红褐或褐色，背腹扁平，体表油亮。前胸背板有黑褐色蝶状斑，斑的中线向后延伸成“小尾”，中线前方有“T”形黄色条纹，后缘灰黄，色斑较宽。翅发达，伸达腹端。主要分布在我国南方地区，如福建、广东、广西和海南。能携带和传播多种细菌和寄生虫虫卵，引起机械性传播疾病的作用。

4. 3. 31

德国小蠊 Blattella germanica

隶属于蜚蠊科。成虫背腹扁平，椭圆形，体表油亮。雌虫色略深，成虫和若虫前胸背板有2条平行的黑褐色纵条。翅发达，雄虫翅伸近腹端，雌虫翅超过腹部。作为与人类生活密切相关且最难治理的重要害虫，其分布极广，几乎遍布中国。可携带细菌、病毒和寄生虫虫卵，其分泌物和粪便可导致人类出现过敏反应。

4. 3. 32

黑胸大蠊 Periplaneta fuliginosa

隶属于蜚蠊科。前胸背板棕褐色，无花纹。雄肛上板短，基部宽，向中部呈弧形收缩，略呈长方形，后缘浅凹，基部两侧有尾须1对。雌肛上板前宽后窄，略呈三角形，中线隆起呈脊状，后缘具三角形切口。在我国南方地区常见，如福建、广东、广西、海南、四川、贵州、云南等地。可携带细菌和寄生虫卵，其分泌物和粪便可引起人类出现过敏反应。

4.3.33

红带锥蝽 *Triatoma rubrofasciata*

隶属于猎蝽科。成虫有细颈，唇基和前唇基突出，从唇基至头顶具颗粒，1对黑色复眼突出。喙直具短毛，分3节；1对触角，分4节，前端色深。前胸背板有颗粒，后缘宽圆，两侧外缘橙红色。可吸食人血，引起局部肿胀、荨麻疹等。可传播美洲锥虫病。全球分布，在我国主要见于海南、广西、广东和福建等沿海地区。

4.3.34

侵扰锥蝽 *Triatoma infestans*

隶属于猎蝽科。颈部两侧各具1个黄点斑，小盾片亮黑；腹部背面观侧缘可见褐色和黄色相间的斑纹，足具有不同的条纹色斑，可与其他种类区别。主要分布在南美洲，是美洲锥虫病的传播媒介。

4.3.35

全沟硬蜱 *Ixodes persulcatus*

隶属于硬蜱科。足长适中、假头基宽短、爪垫近爪端、气门板卵圆形。雌蜱盾板卵圆形，须肢长，基突不明显，耳状突粗短，生殖孔裂口平直；雄蜱须肢粗扁，假头基无基突，盾板刻点小。是森林脑炎、新疆出血热和莱姆病的传播媒介。分布于我国东北、华北、西北和西藏等地。

4.3.36

亚东璃眼蜱 *Hyalomma asiaticum kozlovi*

隶属于硬蜱科。体型中等，关节附近有淡色环带。雌蜱盾板椭圆多角形、长大于宽，气门板短逗点形；雄蜱盾卵圆形、颈沟长而深，气门板曲颈瓶形。成蜱主要寄生于牛、绵羊、山羊、骆驼，也侵袭人，幼蜱和若蜱宿主为小型兽类。为克里米亚刚果出血热等的传播媒介。多见于荒漠或半荒漠地带。在我国主要见于吉林、内蒙古以及西北等地区。

4.3.37

小亚璃眼蜱 *Hyalomma anatomicum*

隶属于硬蜱科。体型小，足黄褐色、关节附近有不明显的淡色环带；雌蜱盾板近菱形、长大于宽、颈沟浅，气门板短逗点形；雄蜱盾板窄、长卵圆形，气门板近似匙形。是克里米亚刚果出血热病毒、泰勒虫和巴贝虫的传播媒介。我国新疆和内蒙古地区有记录。

4.3.38

草原革蜱 *Dermacentor nutalli*

隶属于硬蜱科。盾板上珐琅斑明显，有眼和缘垛；须肢宽短，颚基矩形，足I转节的背距短而圆钝。是巴贝斯虫病、泰勒虫病的传播媒介。多见于半荒漠草原地带。分布于我国东北、华北、西北和西藏等地区。

4.3.39

嗜群血蜱 *Haemaphysalis concinna*

隶属于硬蜱科。须肢前宽后窄，足长适中。雌蜱以近似圆形的盾板和粗短明显的假头基基突为特点，雄蜱的假头基基突和近似椭圆形的大气门板为特征。是巴贝虫病，新疆出血热等的传播媒介。分布于我国东北、新疆等地。

4.3.40

长角血蜱 *Haemaphysalis longicornis*

隶属于硬蜱科。呈红褐色或灰褐色，长卵圆形，背腹扁平。成蜱和若蜱有8条腿，而幼蜱只有6条腿。雌虫在吸饱血后体型会膨胀。可携带和传播多种病原体，主要生活在温带次生林、山地及丘陵边缘地带。主要寄生于牛、马、羊、野兔、刺猬等动物，也侵袭人。广泛分布于我国多个省份。

4.3.41

乳突钝缘蜱 *Ornithodoros papillipes*

隶属于钝缘蜱科。体缘圆钝、体表颗粒状、口下板短。生活在荒漠或半荒漠地区，常见于兽穴或岩窟内，亦见于房舍。寄生于蟾蜍、刺猬、野兔、野鼠以及牛羊等多种动物，亦可侵袭人。国内分布于新疆等地，为蜱媒回归热的媒介，亦可传播Q热等。

4. 3. 42

柏氏禽刺螨 *Ornithonyssus bacoti*

隶属于刺螨科。小型寄生螨虫。雌螨背板狭长，背面表皮覆盖着与背板等长的长刚毛，生殖板狭长且后端尖细，肛板长椭圆形，螯肢呈剪状。吸食宿主血液，寄生于鼠类，亦可侵袭人，引起皮肤瘙痒和过敏反应。在中国主要见于云南。

4. 3. 43

鸡皮刺螨 *Dermanyssus gallinae*

隶属于皮刺螨科。外寄生螨。雌螨背板前端宽后端窄，末端平直。胸板宽大于长，拱形。生殖板末端钝圆。肛板呈圆三角形。螯肢刺针状或鞭状。吸食宿主血液，寄生于家禽，常爬出禽窝叮刺人。全球广泛分布。

4. 3. 44

格氏血厉螨 *Haemolaelaps glasgowi*

隶属于厉螨科。寄生于小型哺乳动物巢穴。雌螨背板几乎覆盖整个背部，胸板扁宽且后缘内凹，生殖腹板较短，具有发达的螯肢和中部膨大、末端弯钩状的鉗齿毛。寄生于鼠类，亦可叮刺人吸血。分布于日本、朝鲜、原苏联及欧洲、美洲、大洋洲的一些国家，在我国广泛分布。

4. 3. 45

毒厉螨 *Laelapsechidninus*

隶属于厉螨科。宽卵圆形，棕黄色，胸板似正方形，上有3对刚毛。生殖腹板后端膨大、后缘凹，几乎与肛门相接，上有4对毛。属毛栖型兼寄生性螨，常寄生于家鼠、野鼠，可侵袭人。全球分布，可传播出血热。

4. 3. 46

地里纤恙螨 *Leptotrombidium deliense*

隶属于纤恙螨科。小型螨虫。幼虫卵圆形、橘红色，体毛较少，具有2对明显的红色眼；盾板略呈长方形，有5根羽状毛，感器呈丝状。我国恙虫病的主要媒介。以黄毛鼠、褐家鼠、黄胸鼠、社鼠、黑线姬鼠为主要宿主。分布于印度次大陆、中国南部、东南亚和西太平洋地区。

4. 3. 47

小盾纤恙螨 *Leptotrombidium scutellare*

隶属于纤恙螨科。小型螨虫，幼虫具有橘红色躯体和红色眼，盾板长方形且前缘内凹后缘弧形凸出，具有5根刚毛，感器丝状带小。日本秋冬型恙虫病的传播媒介。主要宿主为黄毛鼠等。分布于中国、日本、韩国。在我国多地分布，以东北和华北为主。

4. 3. 48

毛囊蠕形螨 *Demodex folliculorum*

隶属于蠕形螨科。小型寄生螨虫，主要寄生于人类和其他哺乳动物的毛囊和皮脂腺中，以皮脂为食，通常不引起疾病，但在某些情况下可能导致玫瑰糠疹和毛囊炎等皮肤问题。

4. 3. 49

皮脂蠕形螨 *Demodex brevis*

隶属于蠕形螨科。小型寄生螨虫，主要生活在人类和其他哺乳动物的皮脂腺中，以皮脂为食。可致酒糟鼻、痤疮、睑缘炎、色素沉着、花斑癣等。好发于成人面部，其中以鼻部、额部及颊部为明显。

4.3.50

人疥螨 *Sarcoptes scabiei*

隶属于疥螨科。微小寄生螨，成虫圆形或椭圆形，乳白或浅黄色，雌螨略大于雄螨，背覆大量圆锥形皮刺和鬃毛，具有4对短圆锥形足和显著的触须与钳状螯肢。寄生于人皮肤表皮层而引起疥疮或瘙痒。

4.3.51

腐食酪螨 *Tyrophagus putrescentiae*

隶属于粉螨科。小型螨，雌螨略大于雄螨，躯体细长，刚毛长而不硬直，附肢颜色随食物而异。常见于储存的粮食、奶酪和其他食品中，以真菌、食物残渣和有机物为食，可致食品变质；在一定条件下或作为过敏原引发人类呼吸道过敏反应。

4.3.52

屋尘螨 *Dermatophagoides pteronyssinus*

隶属于尘螨科。微小螨，雌螨稍大于雄螨，背部中央有纵行皮纹，足III较粗长，足IV短小；雄螨后盾板长大于宽，足I、II等粗，基节I内突不相接。主要滋生在居室家具和不常清洗的织物中，是家庭螨类的主要成员，亦是过敏性哮喘的重要过敏原。

4.3.53

尖吻蝮蛇舌形虫 *Armillifer agkistrodontis*

隶属于筒形虫科。内脏舌形虫病的病原体之一。终宿主为蛇，人为中间宿主。幼虫和若虫寄生在十二指肠、肝、脾、肾、肠系膜、网膜等脏器，多见于肠系膜，在体内移行导致内脏幼虫移行症。主要分布于中国。

4.3.54

锯齿舌形虫 *Linguatula serrata*

隶属于舌形虫科。鼻咽舌形虫病的主要病原体之一。终宿主多为食肉动物，常见为犬、狐、狼、偶见于狮和人。若虫或成虫以钩附着在鼻咽组织，虫体悬浮于鼻腔中，引起咽喉刺激与疼痛。全球分布，常见于中东（如伊朗、黎巴嫩）、印度和非洲部分地区（如尼日利亚）。

5 寄生虫病术语

5.1

阿米巴病 amoebiasis

溶组织内阿米巴感染人体引起的寄生虫病。溶组织内阿米巴主要寄生于结肠，侵袭肠壁引起肠道病变，亦可经血流播散到其他器官，引起肝、肺、脑等肠外阿米巴病。

5.1.1

阿米巴痢疾 amoebic dysentery

溶组织内阿米巴滋养体侵入肠黏膜（多寄生在盲肠、阑尾或升结肠）引起的一种疾病。主要临床表现为血性黏液腹泻、腹痛、里急后重等。

5.1.2

阿米巴瘤 amoeboma

阿米巴性肉芽肿

溶组织内阿米巴滋养体侵入结肠黏膜（常见于盲肠和升结肠）引起的罕见、类似肿瘤的增生性病变。其特征为组织肉芽肿伴慢性炎症和纤维化，通常呈团块状而无症状。但影像学检查中，易与结肠癌等胃肠道肿瘤混淆，需进行鉴别诊断。

5.2

棘阿米巴病 acanthamoebiasis

由棘阿米巴感染人体引起的寄生虫病。经破损皮肤、黏膜、呼吸道等感染引起肉芽肿性阿米巴脑炎，经角膜感染引起棘阿米巴性角膜炎，多见于免疫系统受损人群。

5.3

利什曼病 leishmaniasis

经白蛉传播，由利什曼原虫寄生于人体单核-巨噬细胞内引起的一类寄生虫病。临床表现因虫种和寄生部位不同而异，可分为皮肤利什曼病、黏膜皮肤利什曼病及内脏利什曼病。

5.3.1

内脏利什曼病 visceral leishmaniasis**黑热病 kala-azar**

经白蛉传播，由杜氏利什曼原虫、婴儿利什曼原虫等寄生于人体单核-巨噬细胞内引起，以肝、脾、骨髓、淋巴结等内脏器官受累为主的寄生虫病。主要表现为长期不规则发热、肝脾肿大、全血细胞减少性贫血。

5.3.1.1

人源型内脏利什曼病 human-derived leishmaniasis**平原型黑热病**

经家栖型中华白蛉或新疆长管白蛉传播，主要由杜氏利什曼原虫引起内脏器官受累的寄生虫病。患者为主要传染源，多见于平原地区。

5.3.1.2

犬源型内脏利什曼病 canine-derived leishmaniasis**山丘型黑热病**

经近野栖型中华白蛉传播，主要由婴儿利什曼原虫引起的一种利什曼病。犬为主要传染源，多见于山丘地区。

5.3.1.3

自然疫源型内脏利什曼病 natural endemic-derived leishmaniasis**荒漠型黑热病**

经吴氏白蛉、亚历山大白蛉等野栖蛉种传播，主要由杜氏利什曼原虫引起的寄生虫病。传染源可能是野生动物，多分布于新疆和内蒙古的某些荒漠地区。

5.3.2

皮肤利什曼病 cutaneous leishmaniasis

经白蛉传播，主要由热带利什曼原虫、墨西哥利什曼原虫等寄生于皮肤及皮下组织导致的损害。临床表现为丘疹或斑块、软性结节或脓肿、溃疡及硬性结节等。多见于我国新疆克拉玛依地区。

5.3.2.1

黏膜皮肤利什曼病 mucocutaneous leishmaniasis

由巴西利什曼原虫复合体（包括巴西利什曼原虫、圭亚那利什曼原虫和巴拿马利什曼原虫）寄生于人体单核-巨噬细胞内引起的寄生虫病。主要临床表现为白蛉叮咬部位皮肤及黏膜损害（丘疹、溃疡），严重者可有唇、鼻柔软部分及软腭缺损。

5.3.2.2

黑热病后皮肤利什曼病 post kala-azar dermal leishmaniasis

内脏利什曼病（黑热病）的皮肤迟发并发症，主要由杜氏利什曼原虫引起。患者多在锑剂治疗过程中或治愈后5-10年出现皮肤损害，表现为面部对称性结节、丘疹或色素沉着，组织病理学显示真皮层大量含利什曼原虫的巨噬细胞浸润。

5.4

锥虫病 trypanosomiasis

由锥虫寄生于人体引起的一种寄生虫病。主要包括非洲锥虫病和美洲锥虫病。临床表现因寄生锥虫虫种不同而异。

5.4.1

非洲锥虫病 Africa trypanosomiasis

非洲昏睡病 African sleeping diseases

由布氏锥虫（主要是布氏冈比亚锥虫和布氏罗德西亚锥虫）经舌蝇叮咬而传播的寄生虫病。初期可出现发热、皮疹、水肿和淋巴结肿大等症状。随病情进展，可致中枢神经系统受累，引起昏睡、昏迷等临床表现，重者致死。

5.4.2

美洲锥虫病 American trypanosomiasis

恰加斯病 Chagas disease

由克氏锥虫经锥蝽叮咬传播的寄生虫病。临床表现多样，急性期可出现发热、肝脾肿大、淋巴结肿大等，慢性期主要病变为心肌炎，食管与结肠肥大和扩张，形成巨食管和巨结肠。

5.5

贾第虫病 giardiasis

由蓝氏贾第鞭毛虫滋养体寄生在人体小肠所引起寄生虫病。感染途径包括摄入被贾第虫污染的食物或水，以及直接接触感染者的粪便而感染。大多数感染者无明显临床症状，出现症状者主要表现为急、慢性腹泻，后者常伴有吸收不良综合征。

5.6

滴虫性阴道炎 trichomonas vaginitis

通过性接触或接触受污染的物品感染阴道毛滴虫引起的阴道炎症。临床主要表现为外阴瘙痒、阴道白带增多等症状。

5.7

滴虫性尿道炎 trichomonas urethritis

通过性接触或接触受污染的物品感染阴道毛滴虫引起的尿道炎症。临床主要表现为尿频、尿急和尿痛等症状。男、女均可感染，但男性症状通常不明显或为无症状感染者。

5.8

肠内滴虫病 embadomoniasis intestinalis

因食入含有肠内滴虫包囊的食物和水而感染的寄生虫病。多不表现明显症状，大量滋养体寄生引起小肠黏膜卡他性炎症。临床主要表现为间歇性排恶臭味软便或呈粥样、伴腹胀。

5.9

人毛滴虫病 trichomoniasis hominis

人毛滴虫滋养体寄生于人体的盲肠和结肠（多见于回盲部）内引起的寄生虫病。感染途径为粪-口传播，蝇可作为机械性传播媒介。目前尚无证据表明人毛滴虫对人体有致病作用。

5.10

蠊缨滴虫病 lophomomas blattarum disease

蠊缨滴虫通过食入或吸入等方式侵入人体的上呼吸道及肺组织，引起呼吸道及肺部感染的一种寄生虫病。临床主要表现为发热、胸闷、气短、咳嗽、咳白色黏液丝样痰。常见于免疫功能低下的个体，如器官移植患者、艾滋病患者和中、老年人。

5.11

疟疾 *malaria*

由疟原虫寄生于人体引起的一类寄生虫病，包括间日疟、恶性疟、三日疟、卵形疟和诺氏疟。典型临床表现为周期性发作，每天或隔天或隔两天发作一次，发作时有寒战、发热、出汗等症状。不典型临床表现为具有发冷、发热、出汗等症状，但热型和发作周期不规律。

5.11.1

恶性疟 *falciparum malaria*

由恶性疟原虫寄生于人体引起的一种寄生虫病。多起病急，持续高热，可因脑、肾等重要器官微血管病变，引起细胞缺血、缺氧、变性坏死，导致昏迷、急性肾衰竭、循环衰竭等重症危及生命的多器官功能障碍，若不及时治疗可危及生命。

5.11.2

间日疟 *vivax malaria*

由间日疟原虫寄生于人体引起的一种寄生虫病。临床主要表现为周期性的寒战、发热、出汗和退热，通常隔天发作一次。潜伏期兼有长、短两型，短者一般为12~30天，长者可达1年左右。

5.11.3

卵形疟 *ovale malaria*

由卵形疟原虫寄生于人体引起的一种寄生虫病。临床表现常以寒战、发热、出汗退热的周期性发作，隔天一次，热度较低，无明显寒战，症状缓和。

5.11.4

三日疟 *malariae malaria*

由三日疟原虫寄生于人体引起的一种寄生虫病。隔2日发作一次，且较规律，脾大和贫血均较轻，常有蛋白尿，尤其是儿童感染者。

5.11.5

诺氏疟 *knowlesi malaria*

由诺氏疟原虫寄生于人体引起的一种寄生虫病。临床表现大多为轻症，少数因未及时诊断和治疗导致病情加重，极有可能因并发症而危及生命。

5.11.6

先天性疟疾 *congenital malaria*

含有疟原虫的母体血经受损的胎盘或胎儿通过产道时皮肤受损而进入胎儿，在出生后7天内发病，起病多呈渐进型，常表现为不宁、厌食、呕吐，热型不规则，且易发展成重症疟疾。

5.11.7

脑型疟 *cerebral malaria*

一种凶险型疟疾，由感染疟原虫的红细胞阻塞脑微血管和疟原虫感染引起的免疫病理协同促进引起，主要发生于恶性疟患者中，间日疟也可能引发脑型疟。临幊上中枢神经系统症状明显，如剧烈头痛、昏迷、谵妄、抽搐、惊厥、体温高达40~41℃，个别患者不发热。

5.11.8

输血性疟疾 *transfusion-transmitted malaria*

因输入含有疟原虫的血液而引起的疟疾，具有潜伏期短和无复发的特点。

5.11.9

黑尿热 *melanuric fever; hemoglobinuric fever*

恶性疟患者突然发生的急性血管内溶血。主要临幊表现为血红蛋白尿、黄疸、贫血和高热。

5.11.10

疟疾发作 *paroxysm*

红细胞内期的疟原虫经几代裂体增殖后，血中原虫密度达到发热阈值，引起发作。疟疾的一次典型发作表现为周期性寒战、高热和出汗退热。间日疟和卵形疟隔日发作1次；三日疟隔2日发作1次；恶性疟隔36~48小时发作1次。

5.11.11

复发 relapse

疟疾初发患者红细胞内期疟原虫已被消灭，疟疾发作停止，也未经蚊媒传播感染，经过数周至年余，肝细胞内的休眠子复苏进行红外期发育，产生的裂殖子侵入红细胞内繁殖引起的疟疾发作。恶性疟原虫、三日疟原虫、诺氏疟原虫无休眠子，只有间日疟原虫和卵形疟原虫可引起复发。

5.11.12

再燃 recrudescence

疟疾初发停止后，患者无再感染，仅由体内残存的少量红细胞内期疟原虫在一定条件下重新大量繁殖而引起的疟疾发作。可寄生于人类的疟原虫均可引起再燃。

5.12

弓形虫病 toxoplasmosis

由弓形虫寄生于人体并侵犯脑或眼、肝、心、肺等器官，破坏有核细胞引起的寄生虫病。免疫功能正常者多数无明显临床症状和体征，免疫功能低下或缺陷者可出现严重症状，如弓形虫脑病、弓形虫眼病、弓形虫肝病等。

5.13

隐孢子虫病 cryptosporidiosis

由隐孢子虫（主要为微小隐孢子虫和人隐孢子虫）寄生于人体小肠黏膜上皮细胞内引起的一种寄生虫病。主要临床表现为腹泻，病程多为自限性。免疫功能缺陷患者症状严重，常为持续性霍乱样水泻，常伴剧烈腹痛，水、电解质紊乱和酸中毒。

5.14

肉孢子虫病 sarcocystosis

人肠肉孢子虫和人肌肉肉孢子虫寄生于人体小肠固有层或肌肉引起的人兽共患寄生虫病，包括人肠肉孢子虫病和人肌肉肉孢子虫病。临床表现因寄生虫种不同而异。

5.15

等孢球虫病 isosporiasis

由贝氏等孢球虫和纳塔尔等孢球虫寄生于人体十二指肠及空肠黏膜上皮细胞内引起的人兽共患寄生虫病，主要造成婴幼儿和免疫功能低下者腹泻、腹痛、发热、体重减轻等。免疫功能受累者可出现持续性腹泻，易并发肠外感染。

5.16

微孢子虫病 microsporidiosis

因食入或吸入成熟孢子，或通过人际接触而感染微孢子虫引起的寄生虫病，多发生于艾滋病患者及免疫功能低下者。引起慢性腹泻，也可无明显临床症状。

5.17

环孢子虫病 cyclosporiasis

因食入被成熟卵囊污染的食物或水而感染，卡宴环孢子虫寄生于人体空肠和十二指肠下段肠上皮细胞引起的寄生虫病。临床主要表现为腹泻，在免疫抑制或免疫功能缺陷者可引起持续性腹泻甚至死亡。

5.18

人芽囊原虫病 blastocystosis hominis

由人芽囊原虫感染所致的一种寄生虫病。多数患者无任何症状，部分感染者可出现腹泻、痉挛性腹痛、腹胀、呕吐等，也可出现低热、乏力等全身症状。

5.19

巴贝虫病 **babesiosis**

主要经蜱叮咬传播，由巴贝虫感染人体红细胞引起的一种人兽共患寄生虫病。临床主要表现为以间歇热、脾大、黄疸及溶血等为特征，严重者可引起休克、昏迷、甚至死亡，免疫功能低下者病情严重。

5.20

结肠小袋纤毛虫病 **balantidiasis coli**

结肠小袋纤毛虫寄生于人体结肠，侵犯宿主肠壁组织引起的一种寄生虫病。临床表现可分为三型，多数感染者为无症状型；慢性型表现为周期性腹泻，大便呈粥样或水样，常伴有黏液，无脓血；急性型表现为突然发病，可有腹痛、腹泻和黏液血便，并伴有里急后重，有的出现脱水、营养不良及消瘦。

5.21

血吸虫病 **schistosomiasis**

由血吸虫寄生于人体引起的一类寄生虫病。主要通过接触含有血吸虫尾蚴的水源感染。临床因虫种或寄生部位不同而症状各异，可出现发热、腹痛、腹泻、肝脾病变、血尿等。

5.21.1

日本血吸虫病 **schistosomiasis japonica**

由日本血吸虫成虫寄生于人体门脉-肠系膜静脉系统所引起的寄生虫病。主要病变是虫卵释放可溶性抗原引起的免疫病理损害。临床可分为急性血吸虫病、慢性血吸虫病、晚期血吸虫病、异位血吸虫病。

5.21.1.1

急性血吸虫病 **acute schistosomiasis**

由血吸虫尾蚴大量侵入人体引起的急性感染，主要发生于初次感染或再次大量感染血吸虫尾蚴的人群。临床表现为发热、肝脏肿大及周围血液嗜酸粒细胞显著增多等系列急性症状。

5.21.1.2

慢性血吸虫病 **chronic schistosomiasis**

由于人体经常接触疫水或少量多次感染血吸虫尾蚴而引起的血吸虫病。急性血吸虫病未治愈者，也可演变为慢性血吸虫病。根据临床症状表现可分为隐匿型和普通型，常见乏力、腹痛、便血、肝脾肿大等，轻者可无明显症状。

5.21.1.3

晚期日本血吸虫病 **advanced schistosomiasis**

由于患者反复或大量感染血吸虫尾蚴，未经及时、彻底的治疗，经过2~10年的病理发展过程演变成的一种血吸虫病。临床表现包括门脉高压综合征、严重生长障碍、结肠肉芽肿性增殖、食欲减退、消瘦、乏力、恶心、呕吐、贫血、凝血功能障碍等，抵抗力差时还可合并细菌感染。临幊上可进一步分为巨脾型、腹水型、结肠增殖型和侏儒型。

5.21.1.3.1

巨脾型晚期血吸虫病 **advanced schistosomiasis with megalosplenia**

以脾肿大为主要表现的晚期血吸虫病。长期门脉高压或单核巨噬细胞增生而导致脾肿大。临床表现为脾肿大范围超过脐平线或横径超过腹中线，可伴有脾功能亢进、门脉高压或消化道出血。

5.21.1.3.2

腹水型晚期血吸虫病 **advanced schistosomiasis with ascites**

以腹水积聚为主要表现的晚期血吸虫病。门脉高压与肝功能代偿失调所引起持续而顽固的难治性腹水。临床表现包括上腹饱满不适、腹泻、消瘦，严重者可有恶病质、肝病面容等。

5.21.1.3.3

结肠增殖型晚期血吸虫病 advanced schistosomiasis with colonic granulomatous proliferation

以结肠病变为突出表现的晚期血吸虫病。因大量虫卵沉积于肠壁,导致肉芽肿纤维化、腺体增生、息肉形成、肠腔狭窄等。临床主要表现为左下腹痛、腹泻、便秘或便秘与腹泻交替出现。重者可出现不完全性肠梗阻。

5.21.1.3.4

侏儒型晚期血吸虫病 advanced schistosomiasis with dwarfism

以生长发育障碍为表现的晚期血吸虫病。在儿童时期反复感染血吸虫引起的慢性或晚期血吸虫病,影响内分泌功能,尤其是脑垂体和性腺功能不全。患者表现为身材矮小、面容苍老、无第二性征等临床症状。

5.21.1.4

异位血吸虫病 ectopic schistosomiasis

血吸虫成虫或虫卵寄生于正常寄生部位(如门脉系统)以外的组织或器官所引起相应的病变和损害。其中,脑和肺为最常见的异位发生部位。

5.21.1.5

血吸虫虫卵肉芽肿 schistosome egg granuloma

沉积于组织内的血吸虫虫卵分泌可溶性虫卵抗原,刺激机体免疫细胞产生细胞因子,吸引淋巴细胞、巨噬细胞、嗜酸性粒细胞、中性粒细胞、浆细胞和成纤维细胞等聚集于虫卵周围所形成的结节状结构。

5.21.1.6

干线型肝纤维化 pipestem fibrosis

由于血吸虫虫卵在肝内,特别是在门静脉干支系的小分支静脉及末梢分支内大量沉积,引起门静脉干支系统周围纤维化。主要见于晚期血吸虫病患者。

5.21.1.7

何博礼现象 splendore-hoeppli phenomenon; hoeppli phenomenon

沉积于组织内的日本血吸虫成熟虫卵周围,出现放射状排列的嗜伊红抗原抗体复合物的特征性病理现象,最早由何博礼提出。

5.21.1.8

尾蚴性皮炎 cercarial dermatitis

血吸虫尾蚴钻入人体皮肤引起的变态反应性病变。感染者局部皮肤出现红色斑丘疹,伴刺痛样感觉和明显瘙痒。严重者可伴有全身水肿和多形红斑或风疹块。

5.21.2

埃及血吸虫病 schistosomiasis haematobia

由埃及血吸虫成虫寄生于人体膀胱静脉、盆腔静脉丛等引起的寄生虫病。虫卵沉积在泌尿生殖器官引起炎症和损伤。临床表现为终末血尿,膀胱刺激与尿路阻塞等症状。

5.21.3

曼氏血吸虫病 schistosomiasis mansoni

由曼氏血吸虫成虫寄生于人体肠系膜下静脉、痔静脉丛引起的寄生虫病。虫卵沉积在肝脏与结肠引起炎症和损伤。临床表现为腹痛、腹泻、肝脾肿大等。

5.21.4

湄公血吸虫病 schistosomiasis mekongi

由湄公血吸虫成虫寄生于人体肠系膜静脉引起的寄生虫病。虫卵沉积在肠道与肝脏引起炎症和损伤。临床症状与日本血吸虫病相似,表现为发热、腹痛、腹泻、肝脾肿大等。

5. 21. 5

间插血吸虫病 *schistosomiasis intercalata*

由间插血吸虫成虫寄生于人体肠系膜静脉引起的寄生虫病。虫卵沉积在肠道与肝脏引起炎症和损伤。临床表现为皮肤瘙痒、尾蚴性皮炎、结肠炎、肝脾肿大等。

5. 21. 6

几内亚血吸虫病 *schistosomiasis guineensis*

由几内亚血吸虫感染引起的肠道血吸虫病。在急性期可表现出皮炎、尾蚴性皮炎、发热、寒战、恶心、腹痛、腹泻、无力以及肌痛等症状。长期感染则会导致肠道和肝脏的慢性病变，如肠道出血、肝纤维化以及肝硬化等。

5. 22

华支睾吸虫病 *clonorchiosis sinensis*

因生食或半生食含华支睾吸虫囊蚴的淡水鱼、虾而感染华支睾吸虫，成虫寄生于人体肝胆管引起的寄生虫病。主要临床表现为食欲不振、腹泻、腹胀、消化不良、肝肿大等；重者可引起胆管炎、胆结石等，甚至可发展为肝胆管癌等。

5. 23

姜片吸虫病 *fasciolopsis*

主要通过食用生的或未充分煮熟的含活囊蚴的水生植物而感染布氏姜片吸虫，成虫寄生于人体小肠引起的寄生虫病。主要临床表现为腹痛、腹泻、消化不良，排便量多、稀薄而臭等。重者可出现肠梗阻、智力减退、发育障碍等。

5. 24

片形吸虫病 *fascioliasis*

人感染肝片形吸虫或巨片形吸虫而引起的寄生虫病。因生食含有囊蚴的水生植物而感染。成虫寄生在肝脏胆管内，刺激胆管壁增生，临床表现主要为肝肿大、黄疸、恶心等。

5. 24. 1

肝片形吸虫病 *fascioliasis hepatica*

多因生食带有囊蚴的水生植物而感染肝片形吸虫，成虫寄生于人体肝胆管内引起的寄生虫病。人一般为偶然感染，主要临床表现为突发高热、腹痛、腹泻、恶心、呕吐、乏力、右上腹痛、贫血、黄疸及肝肿大等。

5. 24. 2

巨片形吸虫病 *fascioliasis gigantica*

由巨片形吸虫寄生于宿主肝胆管内引起的寄生虫病。主要临床表现为发热、恶心、呕吐、疼痛、肝肿大、肝区触痛等；轻度感染者症状不明显或无症状。该病在动物中较常见，人感染较少。

5. 25

并殖吸虫病 *paragonimiasis; pulmonary paragonimiasis***肺吸虫病**

由并殖吸虫成虫寄居、幼虫移行而引起的一种人畜共患病。人因生食或半生食淡水蟹或蝲蛄而感染。主要临床表现为咳嗽、胸痛、铁锈色血痰和游走性皮下包块等。轻度感染者无明显临床表现。

5. 25. 1

卫氏并殖吸虫病 *paragonimiasis westermani*

因生食或半生食含囊蚴的淡水蟹或蝲蛄而感染卫氏并殖吸虫，童虫在组织器官中移行、窜扰和成虫在人体肺部定居引起的寄生虫病。主要临床表现为咳嗽、胸痛、铁锈色血痰等。亦可出现肝损害、神经系统症状、皮下包块等。

5. 25. 2

斯氏并殖吸虫病 paragonimiasis skrjabini

因生食或半生食含囊蚴的淡水蟹或蝲蛄而感染斯氏并殖吸虫，童虫在人体的皮肤和（或）内脏内移行、窜扰引起的一种寄生虫病。临床表现因虫体寄生部位不同而异，以皮下游走型囊肿性结节为主。

5. 26

异形吸虫病 heterophyiasis

因生食含囊蚴的淡水鱼或蛙而感染异形科吸虫，成虫寄生于人体小肠引起的寄生虫病。主要临床表现为不定位腹痛、腹泻、黏液稀便等；虫卵随血液循环散播至心、脑组织时，可出现心悸、头痛等症状，重者可致死。

5. 27

横川后殖吸虫病 metagonimiasis yokogawai

由横川后殖吸虫成虫寄生于人和哺乳动物肠道引起的人兽共患寄生虫病。主要临床表现为不定位腹痛、恶心、间歇性腹泻等，少量寄生时可无明显症状。

5. 28

棘口吸虫病 echinostomiasis

因生食含囊蚴的蛙、螺类和鱼类等而感染棘口吸虫，成虫寄生于宿主肠道所引起的人兽共患寄生虫病。主要病变是成虫插入小肠上端黏膜引起的局部炎症，临床表现为消化不良、上腹痛、腹泻等。

5. 29

阔盘吸虫病 eurytremiasis

因误食含有囊蚴的草螽而感染阔盘吸虫，成虫寄生于牛、羊等动物或人的胆道与胰管所致的人兽共患寄生虫病。主要临床表现为营养不良、消瘦、贫血、水肿、腹泻等，部分患者生长发育受阻。

5. 30

双腔吸虫病 dicrocoeliasis

由双腔吸虫属的矛形双腔吸虫、中华双腔吸虫、枝双腔吸虫等吸虫寄生于牛、羊等动物或人的肝胆管中引起的一种人兽共患寄生虫病。主要临床表现为发热、腹痛、腹泻、呕吐、肝肿大等症状。虫卵随血液循环散播到心、脑时，出现心悸、头痛等症状。

5. 31

带绦虫病 taeniasis

由猪带绦虫、牛带绦虫和亚洲带绦虫成虫寄生于人体肠道引起的寄生虫病。主要临床表现为腹部不适、腹痛、消化不良、腹泻或便秘等。

5. 31. 1

猪带绦虫病 taeniasis solium

链状带绦虫病

猪肉绦虫病

有钩绦虫病

由猪带绦虫成虫寄生于人体肠道引起的一种寄生虫病。主要临床表现为腹部隐痛、恶心、呕吐、食欲亢奋或减退、腹泻或便秘、头痛、体重减轻等，但一般无明显症状或仅有轻度腹部不适。

5. 31. 2

囊尾蚴病 cysticercosis

囊虫病

由猪带绦虫的幼虫囊尾蚴寄生于人体皮下组织、肌肉和中枢神经系统等部位引起的一种寄生虫病。主要临床表现因囊尾蚴寄生部位和数量的不同而异,可有发热、肌肉酸痛、皮下结节、心悸、心慌、胸闷气短、癫痫、头晕、头痛、颅内高压、精神障碍等症状。

5.31.3

牛带绦虫病 *taeniasis saginata*

肥胖带绦虫病

牛肉绦虫病

无钩绦虫病

由牛带绦虫成虫寄生于人体肠道引起的一种寄生虫病。主要临床表现为孕节自动从肛门逸出、肛门瘙痒及不适、体重减轻、腹痛、腹泻、恶心、呕吐、食欲亢奋或减退、头痛、头晕等。

5.31.4

亚洲带绦虫病 *taeniasis asiatica*

由亚洲带绦虫成虫寄生于人体肠道引起的一种寄生虫病。主要临床表现为孕节片自肛门逸出、肛门瘙痒、恶心、呕吐、腹痛、腹泻、头痛、头晕等。

5.32

棘球蚴病 *echinococcosis*

包虫病

由棘球属绦虫的幼虫棘球蚴寄生于人体组织、器官引起的一种寄生虫病。临床表现因虫种和寄生部位不同而异,主要为占位性压迫、过敏或继发性感染等引起的一系列症状,如发热、食欲不振、消瘦、呕吐、干咳或咳出棘球蚴碎片、肝区疼痛、胸痛、头痛等。严重者可危及生命。

5.32.1

细粒棘球蚴病 *cystic echinococcosis*

囊型包虫病

由细粒棘球绦虫幼虫寄生于动物和人体的组织、器官引起的一种人兽共患寄生虫病。主要临床表现与棘球蚴的寄生部位、大小、数目、机体反应及合并症有关,有发热、食欲不振、腹泻、消瘦、肝区疼痛、肝区有无痛包块、胸痛、干咳或咳出棘球蚴碎片、少量咯血等。

5.32.2

多房棘球蚴病 *alveolar echinococcosis*

泡球蚴病

泡型包虫病

由多房棘球绦虫幼虫寄生于动物和人体的组织、器官引起的一种人兽共患寄生虫病。主要临床表现为腹部隐痛、肝区包块、黄疸、高热等,症状较细粒棘球蚴病更重,病死率较高。

5.33

膜壳绦虫病 *hymenolepasis*

由膜壳属绦虫成虫寄生于动物或人体肠道引起的一种人兽共患寄生虫病。主要临床表现为胃肠道症状,轻度感染者可无明显症状。

5.33.1

缩小膜壳绦虫病 *hymenolepasis diminuta*

长膜壳绦虫病

由缩小膜壳绦虫成虫或幼虫寄生于啮齿类动物或人体肠道所致的一种人兽共患寄生虫病。主要临床表现为胃肠道与神经系统症状,轻度感染者可无明显症状。

5.33.2

微小膜壳绦虫病 *hymenolepiasis nana*

短膜壳绦虫病

由微小膜壳绦虫成虫或幼虫寄生于啮齿类动物或人体肠道所致的一种人兽共患寄生虫病。主要临床表现为胃肠道与神经系统症状，轻度感染者可无明显症状。

5.34

迭宫绦虫病 *spirometriasis*

由曼氏迭宫绦虫和拟曼氏迭宫绦虫成虫寄生于人体肠道引起的一种寄生虫病。主要临床表现为胃肠道症状，轻度感染者可无明显症状。

5.34.1

曼氏迭宫绦虫病 *spirometriasis mansoni*

由曼氏迭宫绦虫成虫偶然寄生于人体肠道引起的一种寄生虫病。主要临床表现为上腹不适、轻微疼痛、恶心呕吐等轻微的胃肠道症状。

5.35

双叶槽绦虫病 *diphyllobothriasis*

由双叶槽绦虫属（曾为裂头绦虫属）绦虫（主要为阔节双叶槽绦虫）成虫寄生人体肠道所引起的一种寄生虫病。主要临床表现可偶有肠梗阻或恶性贫血等，轻度感染者可无明显症状。

5.35.1

阔节双叶槽绦虫病 *diphyllobothriasis latum*

由阔节双叶槽绦虫成虫寄生于人体小肠引起的一种寄生虫病。主要临床表现偶有肠梗阻或恶性贫血等，轻度感染者无症状。

5.36

伯特绦虫病 *bertiellasis*

由司氏伯特绦虫或短尖伯特绦虫等伯特绦虫属绦虫成虫寄生于人体肠道所引起的一种寄生虫病。主要临床表现为胃肠道症状，轻度感染者常无明显症状。

5.37

克氏假裸头绦虫病 *pseudanoplocephaliasis crawfordi*

由克氏假裸头绦虫成虫寄生于人体引起的一种寄生虫病。主要表现为消化道症状，轻度感染者可无明显症状。

5.38

西里伯瑞列绦虫病 *raillietiniasis celebensis*

由西里伯瑞列绦虫成虫寄生于人体肠道所致的疾病。多数为轻度感染者，无明显临床表现，严重感染者可引起消化道症状、肛门瘙痒。

5.39

曼氏裂头蚴病 *sparganosis mansoni*

由曼氏迭宫绦虫的幼虫（裂头蚴）寄生于人体皮下、眼、口腔、颌面部及中枢神经系统等组织、器官所引起的一种寄生虫病。幼虫在宿主体内移行，临床表现因寄生部位不同而异。

5.40

多头蚴病 *coenurosis*

由多头绦虫属（主要为多头绦虫、链形多头绦虫、布氏多头绦虫、鼠多头绦虫）幼虫寄生于人体器官、组织引起的一种人兽共患寄生虫病。最常见为脑多头蚴病，表现为癫痫发作、头痛，或精神障碍，也可引起眼和皮下、肌肉的感染。

5.41

棘头虫病 acanthocephaliasis

由棘头动物门中的一些虫种(主要为猪巨吻棘头虫、念珠棘头虫)偶尔寄生于人体肠道引起的一类寄生虫病。主要临床表现为胃肠道症状。

5. 42

蛔虫病 ascariasis

由似蚓蛔线虫成虫寄生于人体小肠引起的以消化不良、腹痛等胃肠功能紊乱为临床表现的一种寄生虫病。少数患者可出现胆道蛔虫病、蛔虫性阑尾炎、肠梗阻、肠穿孔等并发症。幼虫在体内移行引起呼吸道炎症与过敏症状。

5. 42. 1

胆道蛔虫病 biliary ascariasis

似蚓蛔线虫通过十二指肠乳头钻入肝内胆道系统引起的以急性梗阻性胆管炎、急性胆绞痛等为主要临床表现的一种寄生虫病。

5. 42. 2

弓首蛔虫病 toxocariasis

由弓首线虫(主要为犬弓首蛔虫和猫弓首蛔虫)的幼虫在人体内移行引起的一类人兽共患寄生虫病。因误摄入虫卵而感染, 主要临床表现包括发热、咳嗽、气喘、皮疹、视力下降等, 以及由幼虫移行所造成的组织损伤。

5. 42. 3

眼弓蛔虫病 ocular toxocariasis

由弓首蛔虫幼虫在眼内移行引起的寄生虫病。症状包括眼底出现肉芽肿性改变, 并伴有玻璃体炎症、视力下降、慢性眼内炎或周边视网膜炎。

5. 42. 4

蛔虫性阑尾炎 ascaris-induced appendicitis

由蛔虫侵入阑尾而诱发的阑尾炎症。表现为腹部阵发性剧烈绞痛并有频繁呕吐。早期症状重而体征较轻, 仅在麦氏点附近有压痛或右下腹可触及有压痛的活动性条索状物。

5. 43

鞭虫病 trichuriasis

由毛首鞭形线虫成虫寄生于人体盲肠、结肠、直肠等引起的一种寄生虫病。一般无症状, 重度感染时可出现腹泻、便血、腹痛、贫血、直肠脱垂等。

5. 44

蛲虫病 enterobiasis

由蠕形住肠线虫成虫寄生于人体结肠和回盲部所引起的一种寄生虫病。以儿童为常见。主要症状是肛门周围和会阴部瘙痒、烦躁不安。

5. 45

钩虫病 hookworm disease

由钩虫(主要为十二指肠钩口线虫和美洲板口线虫)感染人体引起的一种寄生虫病。临床表现多样, 包括皮肤瘙痒(如钩蚴性皮炎)、咳嗽、哮喘、消化道不适、贫血、异嗜症等。重者可出现营养不良、生长发育迟缓和心功能不全等严重症状。

5. 45. 1

十二指肠钩虫病 ancylostomiasis duodenale

由十二指肠钩口线虫感染人体引起的一种寄生虫病。成虫寄生于人体小肠, 主要临床表现为胃肠道症状和缺铁性贫血。十二指肠钩虫的丝状蚴引起钩蚴性皮炎、钩蚴性哮喘等主要症状。

5.45.2

美洲钩虫病 *ancylostomiasis americanus*

由美洲板口线虫感染人体引起的一种寄生虫病。成虫寄生于人体小肠，主要临床表现为胃肠道症状和缺铁性贫血。美洲钩虫的丝状蚴引起钩蚴性皮炎、钩蚴性哮喘等主要症状。症状较十二指肠钩虫感染为轻。

5.46

旋毛虫病 *trichinelllosis*

由旋毛虫成虫和幼虫寄生于人体小肠与骨骼肌引起的一种寄生虫病。主要临床表现为胃肠道症状及发热、眼睑或面部水肿、肌肉疼痛、皮疹等。

5.47

丝虫病 *filariasis*

由丝虫科中的某些虫种（统称为丝虫）成虫寄生于人体淋巴系统、皮下组织、心血管和体腔等组织器官内所引起的一类寄生虫病。该病通过节肢动物吸食血液传播，疾病的症状体征因丝虫寄生部位不同而异。

5.47.1

淋巴丝虫病 *lymphatic filariasis*

由班氏吴策线虫、马来布鲁线虫或帝汶布鲁线虫的成虫寄生于人体的淋巴系统所引起的寄生虫病，经蚊虫叮咬传播。临床表现包括淋巴结炎、淋巴管炎、象皮肿、乳糜尿和鞘膜积液等。

5.47.1.1

班氏丝虫病 *filariasis bancrofti*

由班氏吴策线虫成虫寄生于人体浅部与深部淋巴系统引起的一种丝虫病。临床表现为淋巴结和淋巴管炎、鞘膜积液、乳糜尿和象皮肿等。

5.47.1.1.1

丝虫性乳糜尿 *filarial chyluria*

丝虫病患者尿液中出现乳糜样淋巴液的现象。由班氏丝虫寄生引起肾淋巴管压力增高、肾盂淋巴管受损而致淋巴外漏。为慢性班氏丝虫病的常见临床表现。

5.47.1.1.2

丝虫性睾丸鞘膜积液 *filarial hydrocele testis*

班氏丝虫寄生于人体精索或睾丸淋巴管导致淋巴液回流受阻，淋巴液流入睾丸鞘膜腔内引起的积液。

5.47.1.2

马来丝虫病 *malayan filariasis*

由马来布鲁线虫成虫寄生于人体浅部淋巴系统引起的一种丝虫病，常见临床表现为淋巴结和淋巴管炎、象皮肿。

5.47.1.3

帝汶丝虫病 *timor filariasis*

由帝汶布鲁线虫寄生于人体淋巴系统引起的一种丝虫病，其临床表现类似于马来丝虫病，急性期常为反复发作的淋巴管（结）炎和发热，慢性期则为淋巴水肿和象皮肿。

5.47.1.4

慢性丝虫病 *chronic filariasis*

由急性丝虫病反复发作而引起的以淋巴水肿、象皮肿、乳糜尿及鞘膜积液等为主要临床表现的寄生虫病。

5. 47. 1. 5

急性皮肤淋巴管炎 acute dermal lymphatic adenitis

当皮肤表浅微细淋巴管发炎时，局部皮肤呈弥漫性红肿，表皮紧张，具有光泽，有压痛、灼热感，并常伴有患肢肿胀、炎症、发热和全身不适。通常是淋巴丝虫病的首发临床体征。

5. 47. 1. 6

丝虫性淋巴水肿 filarial lymphedema

淋巴液回流障碍而淤积于组织间隙内形成的局限性或弥漫性水肿。多见于下肢、阴囊和阴茎，多为压凹性水肿。为淋巴丝虫病的常见症状。

5. 47. 1. 7

丝虫性象皮肿 filarial elephantiasis

淋巴水肿持续进展导致皮肤纤维化、瘤状隆起的慢性丝虫病典型现象，严重者形成深沟皱褶、肉刺及疣状增生，班氏丝虫病多累及肢体、阴囊及女性外生殖器，而马来丝虫病仅局限于肢体。

5. 47. 2

盘尾丝虫病 onchocerciasis**河盲症**

经蚋传播，由旋盘尾线虫（简称盘尾丝虫）成虫寄生于人体皮下组织，微丝蚴寄生于结缔组织和皮肤淋巴管内引起的寄生虫病。临床表现包括苔藓样皮炎、皮下结节、视力障碍及失明等。

5. 47. 3

罗阿丝虫病 loiasis

由罗阿罗阿线虫（简称罗阿丝虫）经虻传播，成虫寄生于人体皮下组织或筋膜层引起的一种丝虫病。主要表现为游走性皮下肿块以及眼部症状。

5. 48

恶丝虫病 dirofilariasis

由恶丝虫属部分虫种的幼虫游移至人体肺和皮下组织引起的以哮喘、咳嗽、胸闷、胸痛、气促等肺部症状或皮下结节为主要临床表现的寄生虫病。

5. 49

麦地那龙线虫病 dracunculiasis; Guinea worm disease

由麦地那龙线虫成虫寄生于人体与多种哺乳动物体内引起的寄生虫病。当雌虫移行至人体皮肤时，会释放幼虫和大量代谢产物，导致宿主产生强烈的超敏反应，其主要症状表现为慢性皮肤溃疡。

5. 50

广州管圆线虫病 angiostrongyliasis cantonensis

由广州管圆线虫幼虫寄生于人体所致的寄生虫病。主要临床表现为头痛、发热、皮肤痛觉过敏、脑膜炎、脊髓膜炎、脑炎、神经根炎或脊髓炎等，以脑脊液嗜酸性粒细胞升高为主要特征。

5. 51

东方毛圆线虫病 trichostrongyliasis orientalis

因生食或含吮丝状蚴污染的蔬菜而经口感染，东方毛圆线虫偶然寄生于人体导致的以腹痛、腹泻、贫血为临床表现的寄生虫病。常与钩虫感染混合存在，症状与钩虫感染相似。

5. 52

结膜吸吮线虫病 thelaziasis callipaeda

由结膜吸吮线虫成虫寄生于犬、猫等动物和人的眼部引起的一种人兽共患寄生虫病。主要临床表现为眼部异物感、痒感、疼痛、流泪、畏光、分泌物增多等。

5. 53 **兽比翼线虫病 mammomonogamosis**

人兽比翼线虫病
人比翼线虫病
比翼线虫病

由兽比翼线虫（主要为喉兽比翼线虫和港归兽比翼线虫）成虫寄生于牛、羊等动物和人的咽喉、气管、支气管等部位引起的一类人兽共患寄生虫病。主要临床表现为咽喉部刺激感或咳嗽、咯血和哮喘等。

5.54

肾膨结线虫病 *dioctophymiasis renale*

由肾膨结线虫成虫寄生于人的肾脏或腹腔内引起的一种人兽共患寄生虫病。主要临床表现为腰痛、肾绞痛、反复血尿、尿频等。

5.55

肝毛细线虫病 *capillariasis hepatica*

由肝毛细线虫成虫寄生于鼠和多种哺乳动物肝脏，人因误食感染期虫卵而感染引起的一种人兽共患寄生虫病。主要临床表现为持续发热、肝肿大及嗜酸粒细胞增多等。

5.56

异尖线虫病 *anisakiasis*

由异尖线虫幼虫寄生于人体胃肠道引起的寄生虫病。主要临床表现为上腹部剧痛、伴呕吐、饱胀、偶有腹泻。

5.57

结节线虫病 *oesphagostomiasis*

由结节线虫属幼虫和成虫寄生于肠壁和肠腔引起的人兽共患寄生虫病。主要临床表现为右下腹疼痛伴一个或多个腹部肿块。

5.58

血矛线虫病 *haemonchosis*

由捻转血矛线虫成虫寄生于人胃内引起的以贫血为主要临床表现的一种人兽共患寄生虫病。

5.59

美丽筒线虫病 *gongylonemiasis*

人偶尔因误食含美丽筒线虫幼虫的中间宿主昆虫而感染的寄生虫病。主要临床表现为寄生部位痒感、刺痛、麻木感、虫样蠕动感和肿胀感等。

5.60

铁线虫病 *gordiasis*

由铁线虫纲线虫偶尔感染人体所致的一种罕见的寄生虫病。临床表现与寄生部位有关，可有红肿热痛、瘙痒、慢性营养不良、腹痛、腹泻、泌尿道刺激征等症状。

5.61

颚口线虫病 *gnathostomiasis*

由颚口线虫（主要为棘颚口线虫和刚刺颚口线虫）幼虫游走于人体皮肤、皮下组织以及深部组织器官引起的寄生虫病。临床表现为皮肤或内脏幼虫移行症状，可出现低热、乏力、荨麻疹、恶心、呕吐和上腹部疼痛等症状。

5.62

粪类圆线虫病 *strongyloidiasis*

由粪类圆线虫寄生于人体小肠上段而引起的寄生虫病。临床症状复杂多样，常见小肠和结肠溃疡性炎症。可有皮肤丘疹伴刺痛和痒感，恶心、呕吐、腹痛或间歇性腹泻，过敏性肺炎或哮喘等。在免疫功能低下人群中，反复自体重度感染可导致死亡。

5. 63

舌形虫病 linguatuliasis

由舌形虫幼虫和若虫寄生于啮齿类动物、人或其他哺乳动物引起的一种人兽共患寄生虫病。因食用被舌形虫虫卵污染的新鲜蛇血、蛇胆和蛇肉而感染。可分为内脏舌形虫病和鼻咽舌形虫病。内脏舌形虫病主要临床表现为发热、腹泻、腹痛等，而鼻咽舌形虫病则表现为流涕、流泪、呼吸困难等。

5. 64

虱病 pediculosis

人体虱叮吸人血引起的以皮肤红斑、瘙痒、丘疹为主要表现的皮肤疾病。

5. 65

潜蚤病 tungiasis

由某些蚤类，如潜蚤属、蠕形蚤属、角头蚤属等寄生于人或哺乳动物皮下引起的人兽共患寄生虫病。急性期主要临床表现为红斑、水肿、疼痛和瘙痒，慢性期主要为皮肤脱屑、角化、皲裂、溃疡、甲缘肥大、足趾变形和缺失。严重者可合并感染、行走困难、甚至死亡。好发于足底、脚趾及手指间等。

5. 66

螨病 acariasis

由螨类（主要为粉螨与尘螨）作为变应原引起的一种变态反应性疾病。主要临床表现为过敏性哮喘、鼻炎、皮炎或肠炎等。

5. 67

蠕形螨病 demodicosis; demodicidosis

蠕螨病

囊螨病

毛囊虫病

由蠕形螨属中的毛囊蠕形螨与皮脂蠕形螨寄生于人体皮肤毛囊和皮脂腺引起的疾病。主要临床表现为毛囊炎、脂溢性皮炎、痤疮、酒渣鼻或外耳道瘙痒等。

5. 68

水蛭病 hirudiniasis

由自生生活的水蛭寄生于人体鼻咽喉部、声门下区、阴道、尿道、膀胱等部位引起的一种疾病。主要临床表现为局部瘙痒、异物感或虫爬感、间断性鼻出血、咯血、阴道或尿道出血等。

5. 69

蝇蛆病 myiasis

由蝇类幼虫寄生于人和动物组织器官或腔道引起的一种人兽共患寄生虫病。临床表现因蝇种和寄生部位不同而异，可分为皮肤型、创口型、眼型、空腔型、内脏型和吸血型。

5. 70

疥疮 scabies

由人疥螨在人体皮肤角质层寄生引起的一种接触性传染性皮肤病。主要表现为皮肤丘疹、脓性小结节、湿疹等，皮肤奇痒，白天较轻，夜晚加剧，睡后更甚。

6 病原学检测技术语

6. 1

粪便直接涂片法 stool direct smear method

通过将新鲜粪便样本直接涂于载玻片上，制成薄层涂片，在显微镜下观察涂片中的病原体（如寄生虫卵、幼虫、滋养体等）的一种检测方法。

6. 2

改良加藤法 Kato-Katz method

定量透明厚涂片法

通过过滤，定量板取样，用甘油浸泡的亲水性透明玻璃纸对粪样进行透明的一种粪便中蠕虫卵的定性与定量检测方法。

6. 3

粪便浓聚法 stool concentration method

主要利用寄生虫卵、幼虫及原虫包囊和滋养体与粪便中其他成分在相对密度上的差异对病原体进行浓集，检获包囊或虫卵的方法。包括沉淀法和浮聚法。适用于原虫包囊和蠕虫卵的检查。

6. 4

粪便沉淀法 stool sedimentation method

利用原虫包囊和蠕虫卵比重大，可沉积于液体底部的特点，以检获虫卵和包囊的方法。主要用于蠕虫卵和原虫包囊的检查，但此法对于比重较小的钩虫卵和贾第虫包囊等的检出效果较差。常用的有重力沉淀法、离心沉淀法和汞碘醛离心沉淀法。

6. 5

尼龙绢袋集卵孵化法 egg hatching method after nylon mesh bag concentration

使用两个不同孔径的尼龙筛过滤收集大小介于两个孔径之间的虫卵再通过孵化法使毛蚴孵出，主要用于血吸虫的检测。可用于大规模普查或流行区的现场检查。

6. 6

饱和盐水浮聚法 brine flotation method

基于部分寄生虫卵的比重小于饱和盐水的特性，使其集中于液体表面，以收集和观察虫卵的方法。此法检查钩虫卵效果最佳，也可用于其他线虫虫卵和微小膜壳绦虫虫卵的检测。

6. 7

硫酸锌离心浮聚法 zinc sulfate centrifuge flotation method

利用部分寄生虫卵和原虫包囊与粪便残渣在硫酸锌溶液中的比重差异，通过离心作用使其上浮至溶液表面，以富集病原体用于检查的方法。适用于检测原虫包囊、球虫卵囊、线虫卵和微小膜壳绦虫卵。

6. 8

蔗糖溶液离心浮聚法 flotation method with sucrose solution

基于蔗糖溶液与寄生虫卵囊比重的差异，以及离心作用使其上浮至蔗糖溶液表面，以富集病原体用于检查的方法。特别适用于粪便中隐孢子虫卵囊的检测。

6. 9

钩蚴培养法 culture method for hookworm larvae

通过模拟钩虫卵自然孵化条件，将粪便样本置于湿润环境（25~30℃）培养3~5天，待虫卵孵出丝状蚴后镜检鉴定虫种的寄生虫学诊断方法。

6. 10

淘虫检查法 scouring inspection method

利用水洗、过滤的方式去除粪便中的杂质，保留并浓缩可能存在的寄生虫虫体，进行鉴定与计数的方法，常用于考核驱虫效果。

6. 11

带绦虫孕节检查法 examination of tapeworm pregnancy section

通过孕节压片法或子宫注射染色法观察绦虫孕节的子宫分支情况鉴定绦虫虫种的方法。

6.12

微丝蚴浓集法 microfilaria concentration method

通过溶血和离心将血液等体液中的微丝蚴浓集于容器底部，提高微丝蚴检出率的方法。

6.13

棉签拭子法 swab test on-premises

用棉签擦拭肛门周围，收集寄生虫卵通过显微镜检查寄生虫卵的方法，适用于蛲虫卵和带绦虫卵的检查。

6.14

透明胶纸法 cellophane tape method

用透明胶纸粘附肛门周围寄生虫卵通过显微镜检查寄生虫的方法，适用于蛲虫卵和带绦虫虫卵的检查。

6.15

血涂片镜检 microscopic examination of blood smear

将血液涂制于载玻片上制成的涂片。供显微镜查用的血涂片包括厚血膜涂片和薄血膜涂片两种。适用于检查疟原虫、巴贝虫、丝虫微丝蚴等。

6.15.1

薄血膜镜检法 stained thin blood film

通过观察血细胞平铺涂片中原虫在红细胞内不同发育时期的形态特征，用于血液原虫虫种的鉴定方法。常用吉氏染色，适用于检查疟原虫、巴贝虫等。

6.15.2

厚血膜镜检法 stained thick blood film

取较多血液将其涂成圆形，制作厚血膜并进行染色的方法。与薄血膜涂片相比，厚血膜具有用血量多、涂布面积小、寄生虫集中、检出率高的优点。但因红细胞重叠及制片时可能发生溶血导致虫种和虫体鉴别困难。该方法常用于检查疟原虫、丝虫微丝蚴等。

6.16

尿液沉渣镜检 urinary sediment microscopic examination

通过显微镜对尿液中的沉淀物进行检查，以识别尿液中的细胞、结晶、细菌、寄生虫等。在寄生虫病诊断中，尿液中可查见丝虫微丝蚴、阴道毛滴虫和埃及血吸虫卵等。

6.17

痰液直接涂片检查 sputum direct smear examination

取痰液直接涂片，在显微镜下观察痰液中是否存在细菌、真菌、寄生虫或其他异常细胞的方法。在寄生虫病诊断中，可用于并殖吸虫卵、溶组织内阿米巴滋养体、棘球蚴原头蚴、粪类圆线虫幼虫、蛔虫幼虫和尘螨等的检查。

6.18

十二指肠引流液和胆汁检查 duodenal drainage fluid and bile examination

通过收集十二指肠引流液和胆汁，直接涂片或离心浓集取沉渣，在显微镜下观察分析其中成分的方法。在寄生虫病诊断中，可检查蓝氏贾第鞭毛虫滋养体、华支睾吸虫卵、布氏姜片吸虫卵和肝片吸虫卵等。

6.19

直肠黏膜活检 rectum mucosa biopsy

通过取出直肠黏膜组织进行病理学检查,以确定病变性质的方法。在寄生虫病诊断中,主要用于粪便中查找虫卵困难的慢性和晚期血吸虫病患者。

6. 20

利什曼原虫培养 culture method for *Leishmania*

一种辅助诊断利什曼病的方法。根据利什曼原虫在特定培养基中的生长繁殖特性,通过采集疑似患者样本、无菌接种于培养基,并在适宜条件下培养一段时间后,观察原虫生长情况以辅助诊断利什曼病。

索引

汉语拼音索引

A	阿米巴病	5.1	草原革蜱	4.3.38
	阿米巴痢疾	5.1.1	长管白蛉	4.3.12
	阿米巴瘤	5.1.2	长角血蜱	4.3.40
	阿米巴性肉芽肿	5.1.2	长膜壳绦虫病	5.33.1
	埃及血吸虫	4.2.1.1.2	长效驱虫蚊帐	3.23
	埃及血吸虫病	5.21.2	肠内滴虫病	5.8
	埃及伊蚊	4.3.10	常现唇棘线虫	4.2.3.12
	奥氏曼森线虫	4.2.3.11	常现丝虫	4.2.3.12
	奥氏丝虫	4.2.3.11	齿龈内阿米巴	4.1.1.4
B	巴贝虫	4.1.3.10	耻阴虱	4.3.27
	巴贝虫病	5.19	虫媒寄生虫病	3.9.8
	柏氏禽刺螨	4.3.42	储存宿主	3.8.3
	班氏丝虫	4.2.3.10	储蓄宿主	3.8.3
	班氏丝虫病	5.47.1.1	D	
	班氏吴策线虫	4.2.3.10	大劣按蚊	4.3.4
	伴随免疫	3.12	带虫免疫	3.13
	包虫病	5.32	带虫者	3.11
	孢子虫	4.1.3	带绦虫病	5.31
	孢子生殖	4.1.3.1.15	带绦虫孕节检查法	6.11
	薄血膜镜检法	6.15.1	胆道蛔虫病	5.42.1
	饱和盐水浮聚法	6.6	淡色库蚊	4.3.8
	保虫宿主	3.8.3	德国小蠊	4.3.31
	贝氏等孢球虫	4.1.3.11.1	地里纤恙螨	4.3.46
	比翼线虫病	5.53	等孢球虫	4.1.3.11
	毕氏肠微孢子虫	4.1.3.7	等孢球虫病	5.15
	鞭虫	4.2.3.4	邓肯巴贝虫	4.1.3.10.3
	鞭虫病	5.43	滴虫性尿道炎	5.7
	鞭毛虫	4.1.2	滴虫性阴道炎	5.6
	槟榔南瓜子方	3.33	帝汶布鲁线虫	4.2.3.15
	并殖吸虫病	5.25	帝汶丝虫	4.2.3.15
	伯特绦虫病	5.36	帝汶丝虫病	5.47.1.3
	布氏姜片吸虫	4.2.1.4	迭宫绦虫病	5.34
	布氏锥虫冈比亚亚种	4.1.2.2	叮人率	3.25
	布氏锥虫罗得西亚亚种	4.1.2.3	定量透明厚涂片法	6.2
C			东方毛圆线虫	4.2.3.20
			东方毛圆线虫病	5.51
			毒厉螨	4.3.45

杜氏利什曼原虫	4.1.2.1.1	刚地弓形虫	4.1.3.2
短膜壳绦虫病	5.33.2	高额麻蛇	4.3.18
多房棘球绦虫	4.2.2.3	格氏血厉螨	4.3.44
多房棘球蚴病	5.32.2	弓首蛔虫病	5.42.2
多寄生	3.4.1	弓形虫病	5.12
多头带绦虫	4.2.2.4	弓形虫缓殖子	4.1.3.2.3
多头蚴病	5.40	弓形虫速殖子	4.1.3.2.2
E		弓形虫滋养体	4.1.3.2.1
恶丝虫病	5.48	宫崎并殖吸虫	4.2.1.13
恶性症	5.11.1	共栖	3.2
恶性疟原虫	4.1.3.1.1	共生	3.1
颚口线虫病	5.61	钩虫病	5.45
F		钩蚴培养法	6.9
非洲昏睡病	5.4.1	广州管圆线虫	4.2.3.19
非洲锥虫病	5.4.1	广州管圆线虫病	5.50
菲律宾毛细线虫	4.2.3.23	H	
肥胖带绦虫	4.2.2.7	哈门内阿米巴	4.1.1.2
肥胖带绦虫病	5.31.3	何博礼现象	5.21.1.7
肺吸虫病	5.25	何氏脑炎孢原虫	4.1.3.5
狒狒巴拉姆希阿米巴	4.1.1.7	河盲症	5.47.2
分歧巴贝虫	4.1.3.10.2	黑尿热	5.11.9
粪便沉淀法	6.4	黑热病	5.3.1
粪便浓聚法	6.3	黑热病后皮肤利什曼病	5.3.2.2
粪便直接涂片法	6.1	黑胸大蠊	4.3.32
粪类圆线虫	4.2.3.8	横川后殖吸虫	4.2.1.19
粪类圆线虫病	5.62	横川后殖吸虫病	5.27
福氏耐格里阿米巴	4.1.1.8	红带锥蝽	4.3.33
腐食酪螨	4.3.51	红内期	4.1.3.1.7
复发	5.11.11	红外期	4.1.3.1.6
腹水型晚期血吸虫病	5.21.1.3.2	红细胞内期	4.1.3.1.7
G		红细胞前期	4.1.3.1.6
改良加藤法	6.2	红细胞外期	4.1.3.1.6
肝毛细线虫	4.2.3.22	厚血膜镜检法	6.15.2
肝毛细线虫病	5.55	互利共生	3.3
肝片形吸虫	4.2.1.2	华支睾吸虫	4.2.1.15
肝片形吸虫病	5.24.1	华支睾吸虫病	5.22
感染期	3.16	环孢子虫病	5.17
干线型肝纤维化	5.21.1.6	荒漠型黑热病	5.3.1.3

蛔虫病	5.42	结肠内阿米巴	4.1.1.3
蛔虫胚层	4.2.3.1	结肠小袋纤毛虫	4.1.4.1
蛔虫性阑尾炎	5.42.4	结肠小袋纤毛虫病	5.20
J		结肠增殖型晚期血吸虫病	5.21.1.3.3
机会性寄生虫病	3.9.1	结节线虫病	5.57
鸡皮刺螨	4.3.43	结膜吸吮线虫病	5.52
基本繁殖率	3.28	疥疮	5.70
急性皮肤淋巴管炎	5.47.1.5	经卵传递	3.29
急性血吸虫病	5.21.1.1	厩腐蝇	4.3.21
棘阿米巴	4.1.1.6	巨脾型晚期血吸虫病	5.21.1.3.1
棘阿米巴病	5.2	巨片形吸虫	4.2.1.3
棘颚口线虫	4.2.3.24	巨片形吸虫病	5.24.2
棘口吸虫	4.2.1.5	锯齿舌形虫	4.3.54
棘口吸虫病	5.28	K	
棘球蚴	4.2.2.2.1	卡宴环孢子虫	4.1.3.8
棘球蚴病	5.32	可溶性虫卵抗原	3.35
棘球蚴液	4.2.2.2.7	克氏假裸头绦虫	4.2.2.11
棘头虫病	5.41	克氏假裸头绦虫病	5.37
几内亚血吸虫	4.2.1.1.7	克氏锥虫	4.1.2.4
几内亚血吸虫病	5.21.6	宽角黄虻	4.3.17
季节消长	3.31	昆虫学接种率	3.26
寄生	3.4	阔节裂头绦虫	4.2.2.13
寄生虫	3.7	阔节双叶槽绦虫病	5.35.1
寄生虫病	3.9	阔盘吸虫病	5.29
寄生虫生活史	3.5	L	
家蝇	4.3.19	蓝氏贾第鞭毛虫	4.1.2.6
贾第虫病	5.5	雷氏按蚊	4.3.2
尖吻蝮蛇舌形虫	4.3.53	利什曼病	5.3
间插血吸虫	4.2.1.1.5	利什曼原虫	4.1.2.1
间插血吸虫病	5.21.5	利什曼原虫培养	6.20
间日疟	5.11.2	蠊缨滴虫病	5.10
间日疟原虫	4.1.3.1.2	链尾唇棘线虫	4.2.3.13
兼性寄生虫	3.7.2	链尾丝虫	4.2.3.13
剑水蚤	4.3.25	链状带绦虫	4.2.2.5
姜片吸虫病	5.23	链状带绦虫病	5.31.1
角皮层	4.2.2.2.5	裂体生殖	4.1.3.1.16
杰普尔按蚊	4.3.5	裂头蚴	4.2.2.1
杰普尔按蚊日月潭亚种	4.3.5	裂殖体	4.1.3.1.11

裂殖子	4.1.3.1.12	美洲大蠊	4.3.30
淋巴丝虫病	5.47.1	美洲钩虫病	5.45.2
硫酸锌离心浮聚法	6.7	美洲锥虫病	5.4.2
卵形症	5.11.3	棉签拭子法	6.13
卵形症原虫	4.1.3.1.3	免疫逃避	3.14
罗阿罗阿线虫	4.2.3.17	膜壳绦虫病	5.33
罗阿丝虫	4.2.3.17	N	
罗阿丝虫病	5.47.3	囊虫病	5.31.2
M		囊虫胚层	4.2.2.6
马耳他十字	4.1.3.10.4	囊蚴病	5.67
马来布鲁线虫	4.2.3.14	囊尾蚴病	5.31.2
马来丝虫	4.2.3.14	囊型包虫病	5.32.1
马来丝虫病	5.47.1.2	囊液	4.2.2.2.7
马来血吸虫	4.2.1.1.6	蛲虫	4.2.3.5
麦地那龙线虫	4.2.3.26	蛲虫病	5.44
麦地那龙线虫病	5.49	脑型疟	5.11.7
螨病	5.66	内脏利什曼病	5.3.1
曼氏迭宫绦虫	4.2.2.12	尼龙绢袋集卵孵化法	6.5
曼氏迭宫绦虫病	5.34.1	黏膜皮肤利什曼病	5.3.2.1
曼氏裂头蚴病	5.39	尿液沉渣镜检	6.16
曼氏血吸虫	4.2.1.1.3	牛带绦虫病	5.31.3
曼氏血吸虫病	5.21.3	牛带绦虫胚层	4.2.2.7
慢性丝虫病	5.47.1.4	牛肉绦虫病	5.31.3
慢性血吸虫病	5.21.1.2	疟疾	5.11
猫弓首线虫	4.2.3.3	疟疾发作	5.11.10
猫后睾吸虫	4.2.1.16	疟色素	4.1.3.1.9
猫栉首蚤	4.3.24	疟原虫	4.1.3.1
毛囊虫病	5.67	诺氏疟	5.11.5
毛囊蠕形螨	4.3.48	诺氏疟原虫	4.1.3.1.5
毛首鞭形线虫	4.2.3.4	P	
毛足原蚴	4.3.16	盘尾丝虫	4.2.3.16
矛形双腔吸虫	4.2.1.6	盘尾丝虫病	5.47.2
湄公血吸虫	4.2.1.1.4	泡球蚴病	5.32.2
湄公血吸虫病	5.21.4	泡型包虫病	5.32.2
媒介生物	3.18	泡翼线虫	4.2.3.28
美丽筒线虫	4.2.3.21	胚层	4.2.2.2.6
美丽筒线虫病	5.59	配子生殖	4.1.3.1.14
美洲板口线虫	4.2.3.7	配子体	4.1.3.1.13

皮肤利什曼病	5.3.2	肉孢子囊	4.1.3.3.7
皮脂蠕形螨	4.3.49	蠕螨病	5.67
片形吸虫病	5.24	蠕形螨病	5.67
平原型黑热病	5.3.1.1	蠕形住肠线虫	4.2.3.5
Q		乳突钝缘蜱	4.3.41
恰加斯病	5.4.2	S	
潜伏期	3.17	三平正并殖吸虫	4.2.1.14
潜蚤病	5.65	三日疟	5.11.4
腔阔盘吸虫	4.2.1.9	三日疟原虫	4.1.3.1.4
侵扰锥蝽	4.3.34	山丘型黑热病	5.3.1.2
驱虫治疗	3.20	舌形虫病	5.63
全沟硬蜱	4.3.35	麝猫后睾吸虫	4.2.1.17
犬恶丝虫	4.2.3.18	肾膨结线虫病	5.54
犬弓首线虫	4.2.3.2	生发层	4.2.2.2.6
犬源型内脏利什曼病	5.3.1.2	生发囊	4.2.2.2.4
群体服药	3.21	生殖营养周期	3.30
R		虱病	5.64
热带臭虫	4.3.29	十二指肠钩虫病	5.45.1
人比翼线虫病	5.53	十二指肠钩口线虫	4.2.3.6
人肌肉肉孢子虫	4.1.3.3.4	十二指肠引流液和胆汁检查	6.18
人疥螨	4.3.50	食源性寄生虫病	3.9.4
人毛滴虫病	5.9	世代交替	3.6
人肉孢子虫	4.1.3.3.3	似蚓蛔线虫	4.2.3.1
人虱	4.3.26	室内滞留喷洒	3.24
人兽比翼线虫病	5.53	嗜群血蜱	4.3.39
人兽共患寄生虫病	3.9.7	嗜人按蚊	4.3.2
人血指数	3.27	兽比翼线虫病	5.53
人芽囊原虫	4.1.3.9	输血性疟疾	5.11.8
人芽囊原虫病	5.18	双核匀变虫	4.1.1.9
人隐孢子虫	4.1.3.3.1	双腔吸虫病	5.30
人源型内脏利什曼病	5.3.1.1	双叶槽绦虫病	5.35
人蚤	4.3.23	水源性寄生虫病	3.9.5
日本血吸虫	4.2.1.1.1	水蛭病	5.68
日本血吸虫病	5.21.1	司氏伯特绦虫	4.2.2.14
溶组织内阿米巴	4.1.1.1	丝虫病	5.47
肉孢子虫病	5.14	丝虫性睾丸鞘膜积液	5.47.1.1.2
肉孢子虫卵囊	4.1.3.3.6	丝虫性淋巴水肿	5.47.1.6
肉孢子毒素	4.1.3.3.5	丝虫性乳糜尿	5.47.1.1.1

丝虫性象皮肿	5.47.1.7	五条蚴	4.3.15
丝光绿蝇	4.3.20	X	
斯氏按蚊	4.3.7	西里伯瑞列绦虫病	5.38
斯氏并殖吸虫	4.2.1.12	吸虫	4.2.1
斯氏并殖吸虫病	5.25.2	细粒棘球绦虫	4.2.2.2
宿主	3.8	细粒棘球蚴病	5.32.1
缩小膜壳绦虫	4.2.2.10	先天性疟疾	5.11.6
缩小膜壳绦虫病	5.33.1	纤毛虫	4.1.4
T		线虫	4.2.3
痰液直接涂片检查	6.17	小盾纤恙螨	4.3.47
绦虫	4.2.2	小亚璃眼蜱	4.3.37
淘虫检查法	6.10	新现寄生虫病	3.9.2
体内寄生虫	3.7.3	休眠子	4.1.3.1.8
体外寄生虫	3.7.4	旋毛虫	4.2.3.9
田鼠巴贝虫	4.1.3.10.1	旋毛虫病	5.46
铁线虫	4.2.3.27	旋毛形线虫	4.2.3.9
铁线虫病	5.60	旋盘尾线虫	4.2.3.16
透明胶纸法	6.14	血矛线虫病	5.58
土源性寄生虫病	3.9.6	血涂片镜检	6.15
兔脑炎孢原虫	4.1.3.6	血吸虫	4.2.1.1
W		血吸虫病	5.21
晚期日本血吸虫病	5.21.1.3	血吸虫虫卵肉芽肿	5.21.1.5
微孢子虫	4.1.3.4	血吸虫毛蚴	4.2.1.1.8
微孢子虫病	5.16	血吸虫童虫	4.2.1.1.10
微丝蚴浓集法	6.12	血吸虫尾蚴	4.2.1.1.9
微小按蚊	4.3.3	Y	
微小膜壳绦虫	4.2.2.9	亚东璃眼蜱	4.3.36
微小膜壳绦虫病	5.33.2	亚历山大白蛉	4.3.13
微小内蜒阿米巴	4.1.1.5	亚洲带绦虫	4.2.2.8
微小隐孢子虫	4.1.3.3	亚洲带绦虫病	5.31.4
伪威氏按蚊	4.3.6	眼弓蛔虫病	5.42.3
尾蚴性皮炎	5.21.1.8	叶足虫	4.1.1
卫氏并殖吸虫	4.2.1.11	医学节肢动物	3.19, 4.3
卫氏并殖吸虫病	5.25.1	医学蠕虫	4.2
温带臭虫	4.3.28	医学原虫	4.1
屋尘螨	4.3.52	胰阔盘吸虫	4.2.1.8
无钩绦虫病	5.31.3	异尖线虫	4.2.3.25
吴氏白蛉	4.3.14	异尖线虫病	5.56

异位寄生	3.4.2	锥虫病	5.4
异位血吸虫病	5.21.1.4	滋养体	4.1.3.1.10
异形吸虫病	5.26	子囊	4.2.2.2.3
异形异形吸虫	4.2.1.18	自然疫源型内脏利什曼病	5.3.1.3
阴道毛滴虫	4.1.2.7	自体感染	3.15
隐孢子虫病	5.13		
隐性感染	3.10		
印鼠客蚤	4.3.22		
婴儿利什曼原虫	4.1.2.1.2		
蝇蛆病	5.69		
有钩绦虫病	5.31.1		
幼虫移行症	3.34		
育囊	4.2.2.2.4		
预防性化学药物治疗	3.22		
原头节	4.2.2.2.2		
原头蚴	4.2.2.2.2		
Z			
再燃	5.11.12		
再现寄生虫病	3.9.3		
蔗糖溶液离心浮聚法	6.8		
枝睾吸虫	4.2.1.10		
直肠黏膜活检	6.19		
致倦库蚊	4.3.9		
滞育现象	3.32		
中华按蚊	4.3.1		
中华白蛉	4.3.11		
中华双腔吸虫	4.2.1.7		
中间宿主	3.8.2		
终宿主	3.8.1		
侏儒型晚期血吸虫病	5.21.1.3.4		
猪带绦虫	4.2.2.5		
猪带绦虫病	5.31.1		
猪囊尾蚴	4.2.2.6		
猪人肉孢子虫	4.1.3.3.2		
猪肉绦虫病	5.31.1		
专性寄生虫	3.7.1		
转续宿主	3.8.4		
锥鞭毛体	4.1.2.5		

英文对应词索引

A

<i>Acanthamoeba</i> spp.	4.1.1.6
acanthamoebiasis	5.2
acanthocephaliasis	5.41
acariasis	5.66
acute dermal lymphatic adenitis	5.47.1.5
acute schistosomiasis	5.21.1.1
advanced schistosomiasis	5.21.1.3
advanced schistosomiasis with ascites	5.21.1.3.2
advanced schistosomiasis with colonic granulomatous proliferation	5.21.1.3.3
advanced schistosomiasis with dwarfism	5.21.1.3.4
advanced schistosomiasis with megalospleniasis	5.21.1.3.1
<i>Aedes aegypti</i>	4.3.10
Africa trypanosomiasis	5.4.1
African sleeping diseases	5.4.1
alteration of generations	3.6
alveolar echinococcosis	5.32.2
American trypanosomiasis	5.4.2
amoebiasis	5.1
amoebic dysentery	5.1.1
amoeboma	5.1.2
<i>Ancylostoma duodenale</i>	4.2.3.6
ancylostomiasis americanus	5.45.2
ancylostomiasis duodenale	5.45.1
angiostrongyliasis cantonensis	5.50
<i>Angiostrongylus cantonensis</i>	4.2.3.19
anisakiasis	5.56
<i>Anisakis</i>	4.2.3.25
<i>Anopheles anthropophagus</i>	4.3.2
<i>Anopheles dirus</i>	4.3.4
<i>Anopheles jeyporiensis</i>	4.3.5
<i>Anopheles jeyporiensis candidiensis</i>	4.3.5
<i>Anopheles lesteri</i>	4.3.2
<i>Anopheles minimus</i>	4.3.3
<i>Anopheles pseudowillmori</i>	4.3.6
<i>Anopheles sinensis</i>	4.3.1
<i>Anopheles stephensi</i>	4.3.7

anthelmintic treatment	3.20
arbo-parasitosis	3.9.8
<i>Armillifer agkistrodontis</i>	4.3.53
ascariasis	5.42
<i>Ascaris lumbricoides</i>	4.2.3.1
ascaris-induced appendicitis	5.42.4
<i>Atylotus fulvus</i>	4.3.17
autoinfection	3.15

B

<i>Babesia divergens</i>	4.1.3.10.2
<i>Babesia duncani</i>	4.1.3.10.3
<i>Babesia microti</i>	4.1.3.10.1
<i>Babesia</i> spp.	4.1.3.10
babesiosis	5.19
<i>Balamuthia mandrillaris</i>	4.1.1.7
balantidiasis coli	5.20
<i>Balantidium coli</i>	4.1.4.1
basic reproduction rate	3.28
<i>Bertiella studeri</i>	4.2.2.14
bertielliasis	5.36
betel nut and pumpkin seed mixture	3.33
biliary ascariasis	5.42.1
<i>Blastocystis hominis</i>	4.1.3.9
blastocystosis hominis	5.18
<i>Blattella germanica</i>	4.3.31
bradyzoite of <i>Toxoplasma gondii</i>	4.1.3.2.3
brine flotation method	6.6
brood capsule	4.2.2.2.4
<i>Brugia malayi</i>	4.2.3.14
<i>Brugia timori</i>	4.2.3.15

C

canine-derived leishmaniasis	5.3.1.2
<i>Capillaria hepatica</i>	4.2.3.22
<i>Capillaria philippinensis</i>	4.2.3.23
capillariasis hepatica	5.55
carrier	3.11
cellophane tape method	6.14
cercaria of <i>Schistosoma</i>	4.2.1.1.9

cercarial dermatitis	5.21.1.8
cerebral malaria	5.11.7
Cestode	4.2.2
Chagas disease	5.4.2
chronic filariasis	5.47.1.4
chronic schistosomiasis	5.21.1.2
Ciliate	4.1.4
<i>Cimex hemipterus</i>	4.3.29
<i>Cimex lectularius</i>	4.3.28
clonorchiosis sinensis	5.22
<i>Clonorchis sinensis</i>	4.2.1.15
coenurosis	5.40
commensalism	3.2
concomitant immunity	3.12
congenital malaria	5.11.6
cryptosporidiosis	5.13
<i>Cryptosporidium hominis</i>	4.1.3.3.1
<i>Cryptosporidium parvum</i>	4.1.3.3
<i>Ctenocephalides felis</i>	4.3.24
<i>Culex pipiens pallens</i>	4.3.8
<i>Culex pipiens quinquefasciatus</i>	4.3.9
culture method for hookworm larvae	6.9
culture method for <i>Leishmania</i>	6.20
cutaneous leishmaniasis	5.3.2
cuticle layer	4.2.2.2.5
cyclops	4.3.25
<i>Cyclospora cayetanensis</i>	4.1.3.8
cyclosporiasis	5.17
cystic echinococcosis	5.32.1
cysticercosis	5.31.2
cysticercus cellulosae	4.2.2.6

D

daughter cyst	4.2.2.2.3
definitive host	3.8.1
<i>Demodex brevis</i>	4.3.49
<i>Demodex folliculorum</i>	4.3.48
demodicidosis	5.67
demodicosis	5.67

<i>Dermacentor nutalli</i>	4.3.38
<i>Dermanyssus gallinae</i>	4.3.43
<i>Dermatophagoides pteronyssinus</i>	4.3.52
diapause phenomenon	3.32
dicrocoeliasis	5.30
<i>Dicrocoelium chinensis</i>	4.2.1.7
<i>Dicrocoelium lanceatum</i>	4.2.1.6
dioctophymiasis renale	5.54
<i>Dipetalonema perstans</i>	4.2.3.12
<i>Dipetalonema streptocerca</i>	4.2.3.13
diphyllobothriasis	5.35
diphyllobothriasis latum	5.35.1
<i>Diphyllobothrium latum</i>	4.2.2.13
<i>Dirofilaria immitis</i>	4.2.3.18
dirofilariasis	5.48
dracunculiasis	5.49
<i>Dracunculus medinensis</i>	4.2.3.26
duodenal drainage fluid and bile examination	6.18

E

echinococcosis	5.32
<i>Echinococcus granulosus</i>	4.2.2.2
<i>Echinococcus multilocularis</i>	4.2.2.3
Echinostomas	4.2.1.5
echinostomiasis	5.28
ectoparasite	3.7.4
ectopic parasitism	3.4.2
ectopic schistosomiasis	5.21.1.4
egg hatching method after nylon mesh bag concentration	6.5
embadomoniiasis intestinalis	5.8
emerging parasitic disease	3.9.2
<i>Encephalitozoon cuniculi</i>	4.1.3.6
<i>Encephalitozoon hellem</i>	4.1.3.5
<i>Endolimax nana</i>	4.1.1.5
endoparasite	3.7.3
<i>Entamoeba coli</i>	4.1.1.3
<i>Entamoeba gingivalis</i>	4.1.1.4
<i>Entamoeba hartmani</i>	4.1.1.2
<i>Entamoeba histolytica</i>	4.1.1.1

enterobiasis	5.44
<i>Enterobius vermicularis</i>	4.2.3.5
<i>Enterocytozoon bieneusi</i>	4.1.3.7
entomological inoculation rate	3.26
erythrocytic stage	4.1.3.1.7
<i>Euparagonimus cenocopiosus</i>	4.2.1.14
<i>Eurytrema cladorchis</i>	4.2.1.10
<i>Eurytrema pancreaticum</i>	4.2.1.8
eurytremiasis	5.29
examination of tapeworm pregnancy section	6.11
exoerythrocytic stage	4.1.3.1.6

F

facultative parasite	3.7.2
falciparum malaria	5.11.1
<i>Fasciola gigantica</i>	4.2.1.3
<i>Fasciola hepatica</i>	4.2.1.2
fascioliasis	5.24
fascioliasis gigantica	5.24.2
fascioliasis hepatica	5.24.1
fasciolopsiasis	5.23
<i>Fasciolopsis buski</i>	4.2.1.4
filarial chyluria	5.47.1.1.1
filarial elephantiasis	5.47.1.7
filarial hydrocele testis	5.47.1.1.2
filarial lymphedema	5.47.1.6
filariasis	5.47
filariasis bancrofti	5.47.1.1
final host	3.8.1
Flagellate	4.1.2
flotation method with sucrose solution	6.8
foodborne parasitic disease	3.9.4

G

gametocyte	4.1.3.1.13
gametogony	4.1.3.1.14
germinal layer	4.2.2.2.6
<i>Giardia lamblia</i>	4.1.2.6
giardiasis	5.5
<i>Gnathostoma spinigerum</i>	4.2.3.24

gnathostomiasis	5.61
<i>Gongylonema pulchrum</i>	4.2.3.21
gongylonemiasis	5.59
gonotrophic cycle	3.30
gordiasis	5.60
<i>Gordius</i> spp.	4.2.3.27
Guinea worm disease	5.49

H

<i>Haemaphysalis concinna</i>	4.3.39
<i>Haemaphysalis longicornis</i>	4.3.40
<i>Haematopota pluvialis</i>	4.3.18
<i>Haemolaelaps glasgowi</i>	4.3.44
haemonchosis	5.58
helminth	4.2
hemoglobinuric fever	5.11.9
hemozoin	4.1.3.1.9
heterophydiasis	5.26
<i>Heterophyes heterophyes</i>	4.2.1.18
hirudiniasis	5.68
hoepli phenomenon	5.21.1.7
hookworm disease	5.45
host	3.8
human blood index	3.27
human-derived leishmaniasis	5.3.1.1
<i>Hyalomma anatomicum</i>	4.3.37
<i>Hyalomma asiaticum kozlovi</i>	4.3.36
hydatid fluid	4.2.2.2.7
hymenolepiasis	5.33
hymenolepiasis diminuta	5.33.1
hymenolepiasis nana	5.33.2
<i>Hymenolepis diminuta</i>	4.2.2.10
<i>Hymenolepis nana</i>	4.2.2.9
hypnozoite	4.1.3.1.8
hyatid cyst	4.2.2.2.1
I	
immune evasion	3.14
inapparent infection	3.10
indoor residual spray	3.24

infective stage	3.16
intermediate host	3.8.2
<i>Isospora belli</i>	4.1.3.11.1
<i>Isospora</i> spp.	4.1.3.11
<i>isosporiasis</i>	5.15
<i>Ixodes persulcatus</i>	4.3.35

K

kala-azar	5.3.1
Kato-Katz' method	6.2
knowlesi malaria	5.11.5

L

<i>Laelapsechidninus</i>	4.3.45
larva migrans	3.34
latent period	3.17
<i>Leishmania donovani</i>	4.1.2.1.1
<i>Leishmania infantum</i>	4.1.2.1.2
<i>Leishmania</i> spp.	4.1.2.1
leishmaniasis	5.3
<i>Leptotrombidium deliense</i>	4.3.46
<i>Leptotrombidium scutellare</i>	4.3.47
life cycle of parasite	3.5
<i>Linguatula serrata</i>	4.3.54
linguatuliasis	5.63
<i>Loa loa</i>	4.2.3.17
<i>Lobosea</i>	4.1.1
loiasis	5.47.3
long-lasting insecticidal net	3.23
lophomomas blattarum disease	5.10
<i>Lucilia sericata</i>	4.3.20
lymphatic filariasis	5.47.1

M

malaria	5.11
malariae malaria	5.11.4
malayan filariasis	5.47.1.2
maltese cross	4.1.3.10.4
mammomonogamosis	5.53
man-biting rate	3.25
<i>Mansonella ozzardi</i>	4.2.3.11

mass drug administration	3.21
medical arthropod	3.19, 4.3
melanuric fever	5.11.9
merogony	4.1.3.1.16
merozoite	4.1.3.1.12
metagonimiasis yokogawai	5.27
<i>Metagonimus yokogawai</i>	4.2.1.19
microfilaria concentration method	6.12
microscopic examination of blood smear	6.15
microsporidiosis	5.16
<i>Microsporidium</i> spp.	4.1.3.4
miracidium of <i>Schistosoma</i>	4.2.1.1.8
mucocutaneous leishmaniasis	5.3.2.1
<i>Musca domestica</i>	4.3.19
<i>Muscina stabulans</i>	4.3.21
mutualism	3.3
mutualistic symbiosis	3.3
myiasis	5.69
N	
<i>Naegleria fowleri</i>	4.1.1.8
natural dendemic-derived leishmaniasis	5.3.1.3
<i>Necator americanus</i>	4.2.3.7
Nematode	4.2.3
O	
obligatory parasite	3.7.1
ocular toxocariasis	5.42.3
oesphagostomiasis	5.57
<i>Onchocerca volvulus</i>	4.2.3.16
onchocerciasis	5.47.2
oocyst of <i>Sarcocystis</i>	4.1.3.3.6
<i>Opisthorchis felineus</i>	4.2.1.16
<i>Opisthorchis viverrini</i>	4.2.1.17
opportunistic parasitic disease	3.9.1
<i>Ornithodoros papillipes</i>	4.3.41
<i>Ornithonyssus bacoti</i>	4.3.42
ovale malaria	5.11.3
P	
paragonimiasis skrjabini	5.25.2

paragonimiasis westermani	5.25.1
paragonimiasis	5.25
<i>Paragonimus miyazakii</i>	4.2.1.13
<i>Paragonimus skrjabini</i>	4.2.1.12
<i>Paragonimus westermani</i>	4.2.1.11
parasite	3.7
parasitic diseases	3.9
parasitism	3.4
paratenic host	3.8.4
paroxysm	5.11.10
pediculosis	5.64
<i>Pediculus humanus</i>	4.3.26
<i>Periplaneta americana</i>	4.3.30
<i>Periplaneta fuliginosa</i>	4.3.32
<i>Phlebotomus alexandri</i>	4.3.13
<i>Phlebotomus chinensis</i>	4.3.11
<i>Phlebotomus longiductus</i>	4.3.12
<i>Phlebotomus wui</i>	4.3.14
<i>Physaloptera</i> spp.	4.2.3.28
pipestem fibrosis	5.21.1.6
<i>Plasmodium falciparum</i>	4.1.3.1.1
<i>Plasmodium knowlesi</i>	4.1.3.1.5
<i>Plasmodium malariae</i>	4.1.3.1.4
<i>Plasmodium ovale</i>	4.1.3.1.3
<i>Plasmodium</i> spp.	4.1.3.1
<i>Plasmodium vivax</i>	4.1.3.1.2
polyparasitism	3.4.1
post kala-azar dermal leishmaniasis	5.3.2.2
premunition	3.13
preventive chemotherapy	3.22
<i>Prosimulium hirtipes</i>	4.3.16
protoscolex	4.2.2.2.2
protozoa	4.1
pseudanoplocephaliasis crawfordi	5.37
<i>Pthirus pubis</i>	4.3.27
<i>Pulex irritans</i>	4.3.23
pulmonary paragonimiasis	5.25

raillietiniasis celebensis	5.38
recrudescence	5.11.12
rectum mucosa biopsy	6.19
re-emerging parasitic disease	3.9.3
relapse	5.11.11
reservoir host	3.8.3

S

<i>Sappinia diploidea</i>	4.1.1.9
sarcocysin	4.1.3.3.5
sarcocyst	4.1.3.3.7
<i>Sarcocystis hominis</i>	4.1.3.3.3
<i>Sarcocystis lindemanni</i>	4.1.3.3.4
<i>Sarcocystis suihominis</i>	4.1.3.3.2
sarcocystosis	5.14
<i>Sarcoptes scabiei</i>	4.3.50
scabies	5.70
<i>Schistosoma guineensis</i>	4.2.1.1.7
<i>Schistosoma haematobium</i>	4.2.1.1.2
<i>Schistosoma intercalatum</i>	4.2.1.1.5
<i>Schistosoma japonicum</i>	4.2.1.1.1
<i>Schistosoma malayensis</i>	4.2.1.1.6
<i>Schistosoma mansoni</i>	4.2.1.1.3
<i>Schistosoma mekongi</i>	4.2.1.1.4
<i>Schistosoma</i> spp.	4.2.1.1
schistosome egg granuloma	5.21.1.5
schistosomiasis	5.21
schistosomiasis guineensis	5.21.6
schistosomiasis haematobia	5.21.2
schistosomiasis intercalata	5.21.5
schistosomiasis japonica	5.21.1
schistosomiasis mansoni	5.21.3
schistosomiasis mekongi	5.21.4
schistosomulum	4.2.1.1.10
schizogony	4.1.3.1.16
schizont	4.1.3.1.11
scouring inspection method	6.10
seasonal fluctuation	3.31
silent infection	3.10

<i>Simulium quinquestriatum</i>	4.3.15
soil-transmitted parasitic disease	3.9.6
soluble egg antigen	3.35
sparganosis mansoni	5.39
sparganum	4.2.2.1
<i>Spirometra mansoni</i>	4.2.2.12
spirometriasis	5.34
spirometriasis mansoni	5.34.1
splendore-hoeppli phenomenon	5.21.1.7
sporogony	4.1.3.1.15
Sporozoan	4.1.3
sputum direct smear examination	6.17
stained thick blood film	6.15.2
stained thin blood film	6.15.1
stool concentration method	6.3
stool direct smear method	6.1
stool sedimentation method	6.4
<i>Strongyloides stercoralis</i>	4.2.3.8
strongyloidiasis	5.62
swab test onpremises	6.13
symbiosis	3.1

T

tachyzoite of <i>Toxoplasma gondii</i>	4.1.3.2.2
<i>Taenia asiatica</i>	4.2.2.8
<i>Taenia Multiceps</i>	4.2.2.4
<i>Taenia saginata</i>	4.2.2.7
<i>Taenia solium</i>	4.2.2.5
taeniasis	5.31
taeniasis asiatica	5.31.4
taeniasis saginata	5.31.3
taeniasis solium	5.31.1
thelaziasis callipaeda	5.52
timor filariasis	5.47.1.3
<i>Toxocara canis</i>	4.2.3.2
<i>Toxocara cati</i>	4.2.3.3
toxocariasis	5.42.2
<i>Toxoplasma gondii</i>	4.1.3.2
toxoplasmosis	5.12

transfusion-transmitted malaria	5.11.8
transovarian transmission	3.29
transport host	3.8.4
Trematode	4.2.1
<i>Triatoma infestans</i>	4.3.34
<i>Triatoma rubrofasciata</i>	4.3.33
<i>Trichinella spiralis</i>	4.2.3.9
trichinellosis	5.46
trichomonas urethritis	5.7
<i>Trichomonas vaginalis</i>	4.1.2.7
trichomonas vaginitis	5.6
trichomoniasis hominis	5.9
trichostrongyliasis orientalis	5.51
<i>Trichostrongylus orientalis</i>	4.2.3.20
trichuriasis	5.43
<i>Trichuris trichiura</i>	4.2.3.4
trophozoite	4.1.3.1.10
trophozoite of <i>Toxoplasma gondii</i>	4.1.3.2.1
<i>Trypanosoma brucei gambiense</i>	4.1.2.2
<i>Trypanosoma brucei rhodesiense</i>	4.1.2.3
<i>Trypanosoma cruzi</i>	4.1.2.4
trypanosomiasis	5.4
trypomastigote	4.1.2.5
tungiasis	5.65
<i>Tyrophagus putrescentiae</i>	4.3.51
U	
urinary sediment microscopic examination	6.16
V	
vector	3.18
visceral leishmaniasis	5.3.1
vivax malaria	5.11.2
W	
waterborne parasitic disease	3.9.5
<i>Wuchereria bancrofti</i>	4.2.3.10
X	
<i>Xenopsylla cheopis</i>	4.3.22
Z	
zinc sulfate centrifuge flotation method	6.7

zoonotic parasitic disease	3.9.7
---	-------
